EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book X ray Characterization of Materials

Download or read book X ray Characterization of Materials written by Eric Lifshin and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.

Book Materials Characterization

Download or read book Materials Characterization written by Yang Leng and published by John Wiley & Sons. This book was released on 2009-03-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.

Book X Ray Line Profile Analysis in Materials Science

Download or read book X Ray Line Profile Analysis in Materials Science written by Gubicza, Jen? and published by IGI Global. This book was released on 2014-03-31 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.

Book X Ray Diffraction for Materials Research

Download or read book X Ray Diffraction for Materials Research written by Myeongkyu Lee and published by CRC Press. This book was released on 2017-03-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.

Book Materials Characterization Using Nondestructive Evaluation  NDE  Methods

Download or read book Materials Characterization Using Nondestructive Evaluation NDE Methods written by Gerhard Huebschen and published by Woodhead Publishing. This book was released on 2016-03-23 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Book Microstructural Characterization of Materials

Download or read book Microstructural Characterization of Materials written by David Brandon and published by John Wiley & Sons. This book was released on 2013-03-21 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Book Advanced X ray Characterization Techniques

Download or read book Advanced X ray Characterization Techniques written by Zainal Arifin Ahmad and published by Trans Tech Publication. This book was released on 2013 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray applications and techniques are gaining importance and are moving to the forefront of science. A powerful tool with many advantages, X-ray applications and techniques present a route for rapid, hassle-free, non-destructive, safe and accurate analysis. This book contains a compilation of papers, all related to X-ray techniques, which are applied in various areas of science and technology, namely in research and industry. This publication aims to showcase the current diversity and versatility of X-ray related techniques. With contributors from all around the world, this publication of compiled papers will relate a host of X-ray related techniques with aims and the eventual findings, all of which are presented in a short and concise manner. It is believed that this book will be a good scientific literature which provides clear and important information on X-ray related ventures.

Book In situ Materials Characterization

Download or read book In situ Materials Characterization written by Alexander Ziegler and published by Springer Science & Business Media. This book was released on 2014-04-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.

Book Fundamentals of Powder Diffraction and Structural Characterization of Materials  Second Edition

Download or read book Fundamentals of Powder Diffraction and Structural Characterization of Materials Second Edition written by Vitalij Pecharsky and published by Springer Science & Business Media. This book was released on 2008-11-24 with total page 751 pages. Available in PDF, EPUB and Kindle. Book excerpt: A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .

Book Handbook of Materials Characterization

Download or read book Handbook of Materials Characterization written by Surender Kumar Sharma and published by Springer. This book was released on 2018-09-18 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.

Book Characterization of Materials

Download or read book Characterization of Materials written by John Wiley & Sons Inc and published by John Wiley & Sons. This book was released on 2002-10-15 with total page 1390 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A thoroughly updated and expanded new edition, this work features a logical, detailed, and self-contained coverage of the latest materials characterization techniques. Reflecting the enormous progress in the field since the last edition, this book details a variety of new powerful and accessible tools, improvements in methods arising from new instrumentation and approaches to sample preparation, and characterization techniques for new types of materials, such as nanomaterials. Researchers in materials science and related fields will be able to identify and apply the most appropriate method in their work"--

Book X ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation

Download or read book X ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation written by Mehdi Khodaei and published by BoD – Books on Demand. This book was released on 2017-03-22 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, nanomaterials are attracting huge attentions not only from a basic research point of view but also for their potential applications. Since finding the structure-property-processing relationships can open new windows in the application of materials, the material characterizations play a crucial role in the research and development of materials science. The increasing demand for energy with the necessity to find alternative renewable and sustainable energy sources leads to the rapid growth in attention to energy materials. In this book, the results of some outstanding researches on synchrotron-based characterization of nanostructured materials related to energy applications are presented.

Book Materials Characterization Techniques

Download or read book Materials Characterization Techniques written by Sam Zhang and published by CRC Press. This book was released on 2008-12-22 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche

Book X ray and Neutron Techniques for Nanomaterials Characterization

Download or read book X ray and Neutron Techniques for Nanomaterials Characterization written by Challa S.S.R. Kumar and published by Springer. This book was released on 2016-10-13 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

Book Encyclopedia of Materials Characterization

Download or read book Encyclopedia of Materials Characterization written by Charles A. Evans and published by Gulf Professional Publishing. This book was released on 1992 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.

Book Materials Chemistry

Download or read book Materials Chemistry written by Bradley D. Fahlman and published by Springer. This book was released on 2018-08-28 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.

Book Characterization of Crystal Growth Defects by X Ray Methods

Download or read book Characterization of Crystal Growth Defects by X Ray Methods written by B.K. Tanner and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of a NATO Advanced Study Institute entitled "Characterization of Crystal Growth Defects by X-ray Methods' held in the University of Durham, England from 29th August to 10th September 1979. The current interest in electronic materials, in particular silicon, gallium aluminium arsenide, and quartz, and the recent availability of synchrotron radiation for X-ray diffraction studies made this Advanced Study Institute particularly timely. Two main themes ran through the course: 1. A survey of the various types of defect occurring in crystal growth, the mechanism of their different methods of generation and their influence on the properties of relativelY perfect crystals. 2. A detailed and advanced course on the observation and characterization of such defects by X-ray methods. The main emphasis was on X-ray topographic techniques but a substantial amount of time was spent on goniometric techniques such as double crystal diffractometry and gamma ray diffraction. The presentation of material in this book reflects these twin themes. Section A is concerned with defects, Section C with techniques and in linking them. Section B provides a concise account of the basic theory necessary for the interpretation of X-ray topographs and diffractometric data. Although the sequence follows roughly the order of presentation at the Advanced Study Institute certain major changes have been made in order to improve the pedagogy. In particular, the first two chapters provide a vital, and seldom articulated, case for the need for characterization for crystals used in device technologies.