EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Whole genome Patterns of DNA Variation in Maize

Download or read book Whole genome Patterns of DNA Variation in Maize written by Michael Allen Gore and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genome-Wide Association Studies (GWAS) offer the potential to resolve complex traits to a single gene or an individual polymorphism. GWAS, which rely on historical recombination for resolving complex traits, require that regions of active recombination be genotyped at high-density. Therefore, the molecular focus to the maize (Zea mays L.) genome is to genotype the gene-rich or low-copy-number regions, as these are the preferential sites for meiotic recombination. Due to the rapid rate of linkage disequilibrium decay in a large, diverse genome, it is possible that several million markers are needed for GWAS in diverse maize. The integration of gene-enrichment approaches and high-throughput genotyping platforms offer the potential to score polymorphisms at the needed scale in an efficient and cost-effective manner. The two initial studies focused on developing methodologies to identify and score polymorphisms in large, complex plant genomes. In the first study, four geneenrichment and complexity reduction target preparation methods were tested for scoring polymorphisms on the Affymetrix Maize GeneChip. The results indicated that the tested target preparation methods offered only modest power to detect polymorphisms with the Maize GeneChip. However, 10,000s of informative markers were still discovered. In the second study, gene-enriched genomic libraries constructed for two maize inbred lines were sequenced using massively parallel pyrosequencing. This combined with a computational SNP calling pipeline designed to reduce the number of false positive SNPs resulting from paralogs lead to the identification of more than 120,000 single-nucleotide polymorphisms (SNPs). The third study used Solexa sequencing for low-copy-enrichment resequencing of inbred lines that are the founders of the maize Nested Association Mapping (NAM) population. More than 3 million polymorphisms were scored across the founders, and a substantial portion of the low-copy fraction was highly divergent or novel relative to the reference genome. Recent and ancestral recombination rates were strongly correlated with nucleotide diversity, which suggests that genome structure partly shaped diversity. In addition, we identified regions of the maize genome that are potentially selective sweeps or involved in regional adaptation. These results should be an excellent resource for GWAS, fine-mapping projects, and understanding maize diversity and evolution.

Book The Maize Genome

    Book Details:
  • Author : Jeffrey Bennetzen
  • Publisher : Springer
  • Release : 2018-11-24
  • ISBN : 3319974270
  • Pages : 390 pages

Download or read book The Maize Genome written by Jeffrey Bennetzen and published by Springer. This book was released on 2018-11-24 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.

Book Unusual Patterns of Genetic Diversity and Gene Expression in the Maize Genome

Download or read book Unusual Patterns of Genetic Diversity and Gene Expression in the Maize Genome written by Li Li and published by . This book was released on 2009 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genetics  Genomics and Breeding of Maize

Download or read book Genetics Genomics and Breeding of Maize written by Ramakrishna Wusirika and published by CRC Press. This book was released on 2014-08-05 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequencing of the maize genome has opened up new opportunities in maize breeding, genetics and genomics research. This book highlights modern trends in development of hybrids, analysis of genetic diversity, molecular breeding, comparative and functional genomics, epigenomicsand proteomics in maize. The use of maize in biofuels, phytoremediation and

Book In the Light of Evolution

Download or read book In the Light of Evolution written by National Academy of Sciences and published by . This book was released on 2007 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.

Book Genetic Dissection of Maize Regeneration and Wheat Disease Resistance

Download or read book Genetic Dissection of Maize Regeneration and Wheat Disease Resistance written by Guifang Lin and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing human population worldwide and the changing growth environments require significant crop improvement, which can be accelerated by plant genome engineering. Developing plant cultivars amenable to transformation and improving understanding of the genetic bases of important phenotypic traits can facilitate the use of advanced genome engineering technologies. This dissertation is focused on the genetic analysis of maize transformation and wheat resistance to the disease of leaf rust. The results will provide knowledge to improve crop transformation and wheat disease resistance. Plant transformation is a powerful tool for crop improvement and gene function validation. However, the transformation efficiency of maize is highly dependent on the tissue types and the genotypes. The maize inbred line A188 is amenable to transformation. A188 also exhibits many contrasting traits to the inbred line B73, which is recalcitrant to transformation. B73 was used to generate the first maize reference genome. The lack of genome sequences of A188 limits the use of A188 as a model for functional studies. Here, a chromosome-level genome assembly of A188 was constructed using long reads and optical physical maps. Genome comparison of A188 with B73 based on both whole genome alignments and sequencing read depths identified approximately 1.1 Gb syntenic sequences as well as extensive structural variation. Further, transcriptome and epigenome analyses with the A188 reference genome revealed enhanced gene expression of defense pathways and altered DNA methylation patterns of embryonic callus. The A188 genome assembly provides a foundational resource for analyses of genome variation and gene function in maize. In maize, morphologic types of calli induced from immature embryos are associated with the regeneration capability, which is a major factor determining the transformation efficiency. Here, two contrasting callus types, slow-growth type I calli and fast-growth type II calli, from the selected B73xA188 F2 population were sequenced using Genotyping-By-Sequencing (GBS) and RNA-Seq. With both approaches, the genomic loci associated with the callus type were mapped to chromosomes 2, 5, 6, 8, and 9. From F2 RNA-Seq, differentially expressed genes were identified from the comparison of type II and I calli. In addition, RNA-Seq analysis was performed using fast- and slow-growth calli identified for the A188 calli. Gene ontology (GO) enrichment analysis showed that the down-regulated genes in type II F2 calli and fast-growth A188 calli, as respectively compared to type I calli and slow-growth A188 calli, are overrepresented in the pathway related to cell wall organization, suggesting the role of cell wall formation in the callus development. Besides maize genetic and genomic studies, the dissertation includes the cloning of a leaf rust resistance gene in wheat. Wheat leaf rust disease is caused by a fungal pathogen, Puccinia triticina. The Lr42 gene from the wheat wild relative Aegilops tauschii confers resistance to all leaf rust races tested to date. Through bulked segregant RNA-Seq (BSR-Seq) mapping and further fine mapping, we identified an Lr42 candidate gene, which encodes a nucleotide-binding site leucine-rich repeat (NLR) protein. Transformation of the candidate gene to a leaf rust-susceptible wheat cultivar markedly enhanced the disease resistance, confirming the candidate NLR gene is the Lr42 gene. Cloning of Lr42 expands the repertoire of cloned rust resistance genes, as well as provides precise diagnostic gene markers for wheat improvement.

Book Epigenetics in Plants of Agronomic Importance  Fundamentals and Applications

Download or read book Epigenetics in Plants of Agronomic Importance Fundamentals and Applications written by Raúl Alvarez-Venegas and published by Springer. This book was released on 2014-07-22 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decades, chromatin remodelling has emerged as an important regulator of gene expression and plant defense. This book provides a detailed understanding of the epigenetic mechanisms involved in plants of agronomic importance. The information presented here is significant because it is expected to provide the knowledge needed to develop in the future treatments to manipulate and selectively activate/inhibit proteins and metabolic pathways to counter pathogens, to treat important diseases and to increase crop productivity. New approaches of this kind and the development of new technologies will certainly increase our knowledge of currently known post-translational modifications and facilitate the understanding of their roles in, for example, host-pathogen interactions and crop productivity. Furthermore, we provide important insight on how the plant epigenome changes in response to developmental or environmental stimuli, how chromatin modifications are established and maintained, to which degree they are used throughout the genome, and how chromatin modifications influence each another.

Book Quantitative Genetics in Maize Breeding

Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Book Evolutionary Genomics

    Book Details:
  • Author : Maria Anisimova
  • Publisher : Humana Press
  • Release : 2012-03-08
  • ISBN : 9781617795848
  • Pages : 556 pages

Download or read book Evolutionary Genomics written by Maria Anisimova and published by Humana Press. This book was released on 2012-03-08 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies. Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight. Volume 2 begins with phylogenomics and continues with in-depth coverage of natural selection, recombination, and genomic innovation. The remaining chapters treat topics of more recent interest, including population genomics, -omics studies, and computational issues related to the handling of large-scale genomic data. Written in the highly successful Methods in Molecular BiologyTM series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses. Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.

Book Plant Genetic Resources of Ethiopia

Download or read book Plant Genetic Resources of Ethiopia written by Jan Engels and published by Cambridge University Press. This book was released on 1991-03-21 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the world centers of crop evolution and origin, Ethiopia has long been recognized as an important area of diversity for several major and various minor crops. Based on an international conference held in Addis Ababa, this book describes how plant genetic diversity in Ethiopia is of vital importance in breeding new varieties of crops with desirable characteristics, such as increased resistance to pests and diseases and greater adaptation to heat and drought. The three main sections in the book consider the Ethiopian center of diversity, germ plasm or genetic material collection and conservation in Ethiopia, and the evaluation and utilization of Ethiopian genetic resources. A broad range of food and feed crops and plants of medicinal and industrial importance are discussed, both at a national and international level. A brief account of conservation strategies and gene bank problems unique to Ethiopia is also given. The importance of Ethiopia's plant genetic resources to world agriculture has been demonstrated on more than one occasion. Plant breeders, geneticists, and botanists throughout the world will, therefore, find this unique book a valuable source of information and an essential reference work.

Book The Soybean Genome

    Book Details:
  • Author : Henry T. Nguyen
  • Publisher : Springer
  • Release : 2017-09-20
  • ISBN : 3319641980
  • Pages : 216 pages

Download or read book The Soybean Genome written by Henry T. Nguyen and published by Springer. This book was released on 2017-09-20 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.

Book The Barley Genome

    Book Details:
  • Author : Nils Stein
  • Publisher : Springer
  • Release : 2018-08-18
  • ISBN : 3319925288
  • Pages : 400 pages

Download or read book The Barley Genome written by Nils Stein and published by Springer. This book was released on 2018-08-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.

Book Specialty Corns

    Book Details:
  • Author : Arnel R. Hallauer
  • Publisher : CRC Press
  • Release : 2000-08-23
  • ISBN : 1420038567
  • Pages : 492 pages

Download or read book Specialty Corns written by Arnel R. Hallauer and published by CRC Press. This book was released on 2000-08-23 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised and updated, the Second Edition of Specialty Corns includes everything in the first edition and more. Considered the standard in this field, significant changes have been made to keep all the information current and bring the references up-to-date. Two new chapters have been added to keep up with the latest trends: Blue Corn and

Book Statistical Population Genomics

Download or read book Statistical Population Genomics written by Julien Y Dutheil and published by . This book was released on 2020-10-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Book Handbook of Maize

Download or read book Handbook of Maize written by Jeff L. Bennetzen and published by Springer Science & Business Media. This book was released on 2009-01-16 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.

Book Genomics of Plant Genetic Resources

Download or read book Genomics of Plant Genetic Resources written by Roberto Tuberosa and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our lives and well being intimately depend on the exploitation of the plant genetic resources available to our breeding programs. Therefore, more extensive exploration and effective exploitation of plant genetic resources are essential prerequisites for the release of improved cultivars. Accordingly, the remarkable progress in genomics approaches and more recently in sequencing and bioinformatics offers unprecedented opportunities for mining germplasm collections, mapping and cloning loci of interest, identifying novel alleles and deploying them for breeding purposes. This book collects 48 highly interdisciplinary articles describing how genomics improves our capacity to characterize and harness natural and artificially induced variation in order to boost crop productivity and provide consumers with high-quality food. This book will be an invaluable reference for all those interested in managing, mining and harnessing the genetic richness of plant genetic resources.

Book The Potato Genome

    Book Details:
  • Author : Swarup Kumar Chakrabarti
  • Publisher : Springer
  • Release : 2017-12-26
  • ISBN : 3319661353
  • Pages : 332 pages

Download or read book The Potato Genome written by Swarup Kumar Chakrabarti and published by Springer. This book was released on 2017-12-26 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the historical importance of potato (Solanum tuberosum L.),potato genetic resources and stocks (including S. tuberosum group Phureja DM1-3 516 R44, a unique doubled monoploid homozygous line) used for potato genome sequencing. It also discusses strategies and tools for high-throughput sequencing, sequence assembly, annotation, analysis, repetitive sequences and genotyping-by-sequencing approaches. Potato (Solanum tuberosum L.; 2n = 4x = 48) is the fourth most important food crop of the world after rice, wheat and maize and holds great potential to ensure both food and nutritional security. It is an autotetraploid crop with complex genetics, acute inbreeding depression and a highly heterozygous nature. Further, the book examines the recent discovery of whole genome sequencing of a few wild potato species genomes, genomics in management and genetic enhancement of Solanum species, new strategies towards durable potato late blight resistance, structural analysis of resistance genes, genomics resources for abiotic stress management, as well as somatic cell genetics and modern approaches in true-potato-seed technology. The complete genome sequence provides a better understanding of potato biology, underpinning evolutionary process, genetics, breeding and molecular efforts to improve various important traits involved in potato growth and development.