Download or read book Sensors and Microsystems written by G. Di Francia and published by Springer Nature. This book was released on 2020-02-21 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors; actuators; micro- and nano-structured materials; mechanisms of interaction and signal transduction; polymers and biomaterials; sensor electronics and instrumentation; analytical microsystems, recognition systems and signal analysis; and sensor networks, as well as manufacturing technologies, environmental, food and biomedical applications. The book gathers a selection of papers presented at the 20th AISEM National Conference on Sensors and Microsystems, held in Naples, Italy in February 2019, the event brought together researchers, end users, technology teams and policy makers.
Download or read book Estimation of Blood Velocities Using Ultrasound written by Jørgen Arendt Jensen and published by Cambridge University Press. This book was released on 1996-03-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, extensively illustrated treatment of ultrasound systems used in estimating blood velocities.
Download or read book Photons Plus Ultrasound written by Alexander A. Oraevsky and published by . This book was released on 2012 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes Proceedings Vol. 7821
Download or read book Frontiers Of Medical Imaging written by Chi Hau Chen and published by World Scientific. This book was released on 2014-09-16 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been great progress and increase in demand for medical imaging. The aim of this book is to capture all major developments in all aspects of medical imaging. As such, this book consists of three major parts: medical physics which includes 3D reconstructions, image processing and segmentation in medical imaging, and medical imaging instruments and systems. As the field is very broad and growing exponentially, this book will cover major activities with chapters prepared by leaders in the field.This book takes a balanced approach in providing coverage of all major work done in the field, and thus provides readers a clear view of the frontier activities in the field. Other books may only focus on instrumentation, physics or computer algorithms. In contrast, this book contains all components so that the readers will obtain a full picture of the field. At the same time, readers can gain some deep insights into certain special topics such as 3D reconstruction and image enhancement software systems involving MRI, ultrasound, X-ray and other medical imaging modalities.
Download or read book CMOS Integrated Lab on a chip System for Personalized Biomedical Diagnosis written by Hao Yu and published by John Wiley & Sons. This book was released on 2018-04-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology. A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics. From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference: Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.
Download or read book Ultrafast Ultrasound Imaging written by Hideyuki Hasegawa and published by MDPI. This book was released on 2018-09-21 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Ultrafast Ultrasound Imaging" that was published in Applied Sciences
Download or read book Medical Imaging written by Krzysztof Iniewski and published by John Wiley & Sons. This book was released on 2009-03-23 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology
Download or read book Numerical Simulation of Mechatronic Sensors and Actuators written by Manfred Kaltenbacher and published by Springer. This book was released on 2015-02-07 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets modern demands.
Download or read book Mems for Biomedical Applications written by Shekhar Bhansali and published by Elsevier. This book was released on 2012-07-18 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
Download or read book Mechatronic Systems written by Clarence W. de Silva and published by CRC Press. This book was released on 2007-10-01 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechatronics has emerged as its own discipline over the past decade, yet no reference has lived up to the demands of being a working guide for designing and implementing the new generation of mechatronic systems. Uniting an international team of leading experts, Mechatronic Systems: Devices, Design, Control, Operation and Monitoring rises to the challenge of providing a practical, comprehensive, and detailed guide to the theory and application of modern mechatronics. Weaving the Multi-Domain Tapestry This book treats all components of the mechatronic system as a unified whole, combining mechanics, electronics, intelligent control, sensors, actuators, and communication networks through integrated design. Extensive cross-referencing lends this work a coherence not found in other books on mechatronics, which amount to little more than collections of papers. Real-World Guidance from the Experts Extensive examples and case studies take you effortlessly from theory to analysis, design, and application. Convenient snapshots in the form of tables, graphs, illustrations, and summaries give you immediate access to the information you need. Mechatronic Systems: Devices, Design, Control, Operation and Monitoring is a critical compendium of need-to-know information covering mechatronic devices, communication and control technologies, mechatronic design and optimization, and techniques for monitoring and diagnosis.
Download or read book Computational Science and Engineering written by Arpan Deyasi and published by CRC Press. This book was released on 2016-12-19 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Science and Engineering contains peer-reviewed research presented at the International Conference on Computational Science and Engineering (RCC Institute of Information Technology, Kolkata, India, 4-6 October 2016). The contributions cover a wide range of topics: - electronic devices - photonics - electromagnetics - soft computing - artificial intelligence - modern communication systems Focussing on strong theoretical and methodological approaches and applications, Computational Science and Engineering will be of interest to academia and professionals involved or interested in the above mentioned domains.
Download or read book Medical Imaging written by Troy Farncombe and published by CRC Press. This book was released on 2017-12-19 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.
Download or read book Sensors written by Bruno Andò and published by Springer. This book was released on 2017-09-07 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the best papers presented at the Third Italian National Conference on Sensors, held in Rome, Italy, from 23 to 25 February 2016. The book represents an invaluable and up-to-the-minute tool, providing an essential overview of recent findings, strategies and new directions in the area of sensor research. Further, it addresses various aspects based on the development of new chemical, physical or biological sensors, assembling and characterization, signal treatment and data handling. Lastly, the book applies electrochemical, optical and other detection strategies to relevant issues in the food and clinical environmental areas, as well as industry-oriented applications.
Download or read book Diagnostic Ultrasound Imaging Inside Out written by Thomas L. Szabo and published by Academic Press. This book was released on 2013-12-05 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. - Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future - Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound - Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models
Download or read book Nanostructure Based Sensors for Gas Sensing from Devices to Systems written by Sabrina Grassini and published by MDPI. This book was released on 2019-10-29 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of portable measurement systems able to reach sensing and identification performance comparable with analytical ones. In such a context several efforts must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and its structure, in the electrical characterization of the performance and in the design of suitable measurement setups. This call for papers invites researchers worldwide to report about their novel results on the most recent advances and overview in design and measurements for applications in gas sensors, along with their relevant features and technological aspects. Original research papers are welcome (but not limited) on all aspects that focus on the most recent advances in: (i) basic principles and modeling of gas and VOCs sensors; (ii) new gas sensor principles and technologies; (iii) Characterization and measurements methodologies; (iv) transduction and sampling systems; (vi) package optimization; (vi) gas sensor based systems and applications.
Download or read book MEMS Technology for Biomedical Imaging Applications written by Qifa Zhou and published by MDPI. This book was released on 2019-10-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.
Download or read book Microstereolithography and Other Fabrication Techniques for 3D MEMS written by Vijay K. Varadan and published by John Wiley & Sons. This book was released on 2001-03-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely and accessible book focusses on microstereolithography and other microfabrication for 3D MEMS. The application of MEMS (micro-electro-mechanical systems) in such diverse fields as intelligent microsensors, data storage, biomedical engineering and wireless communications is booming, but although many MEMS books are available, this book is unique in that most others deal with 2D MEMS. This volume discusses the fundamental principles of microstereolithography for fabrication of 3D MEMS devices, providing an account of recent developments in related microfabrication and combined architecture techniques, and illustrating their application in the engineering and medical fields. It provides: * A unique and accessible overview of micro-system manufacture using the latest semiconductor processing techniques * Coverage of the developmental history of MEMS, micro-sensors, actuators and signal processing units * Insight to a range of microfabrication techniques from laser ablation to x-ray lithography, silicon micro-machining and micro-moulding * Describes the latest fabrication prototypes and applications, including thin-film transistors, antennas, wireless telemetry systems and transducers This book will appeal to microelectronics engineers, as well as material technologists, and physicists working in industrial and academic research and development.