EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Vibrational Studies of Intra  and Intermolecular Interactions

Download or read book Vibrational Studies of Intra and Intermolecular Interactions written by Timothy Scott Little and published by . This book was released on 1980 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Infrared and Raman Vibrational Studies of Intermolecular and Intramolecular Interactions in Group III A and Group V A Molecules

Download or read book Infrared and Raman Vibrational Studies of Intermolecular and Intramolecular Interactions in Group III A and Group V A Molecules written by James Edmund Saunders and published by . This book was released on 1972 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intra  and Intermolecular Interactions in the Condensed Phases of Organic Compounds as Studied by Vibrational Spectroscopy

Download or read book Intra and Intermolecular Interactions in the Condensed Phases of Organic Compounds as Studied by Vibrational Spectroscopy written by Victoria Lou Shannon and published by . This book was released on 1986 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intra  and Intermolecular Interactions between Non covalently Bonded Species

Download or read book Intra and Intermolecular Interactions between Non covalently Bonded Species written by Elliot R. Bernstein and published by Elsevier. This book was released on 2020-09-10 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of gases, clusters, liquids, and solids as units or systems, eventually focuses on the properties of these systems as governed by interactions between atoms, molecules, and radicals that are not covalently bonded to one another. The stereo/spatial properties of molecular species themselves are similarly controlled, with such interactions found throughout biological, polymeric, and cluster systems and are a central feature of chemical reactions. Nevertheless, these interactions are poorly described and characterized, with efforts to do so, usually based on a particular quantum or even classical mechanical procedure, obscuring the fundamental nature of the interactions in the process. Intra- and Intermolecular Interactions Between Noncovalently Bonded Species addresses this issue directly, defining the nature of the interactions and discussing how they should and should not be described. It reviews both theoretical developments and experimental procedures in order to explore interactions between nonbonded entities in such a fundamental manner as to elucidate their nature and origins. Drawing attention to the extensive experience of its editor and team of expert authors, Intra- and Intermolecular Interactions Between Noncovalently Bonded Species is an indispensable guide to the foundational knowledge, latest advances, most pressing challenges, and future directions for all those whose work is influenced by these interactions. Comprehensively describes the nature of interactions between nonbonded species in biological systems, liquids, crystals, clusters, and in particular, water. Combines fundamental, theoretical, background information based on various approximations with the knowledge of experimental techniques. Outlines interactions clearly and consistently with a particular focus on frequency and time-resolved spectroscopies as applied to these interactions.

Book Intermolecular Interactions in Formamide Studied by Vibrational Spectrocopy

Download or read book Intermolecular Interactions in Formamide Studied by Vibrational Spectrocopy written by Alan Mortensen and published by . This book was released on 1994 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping

Download or read book Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping written by Hai-Lung Dai and published by World Scientific. This book was released on 1995 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first stimulated emission pumping (SEP) experiments more than a decade ago, this technique has proven powerful for studying vibrationally excited molecules. SEP is now widely used by increasing numbers of research groups to investigate fundamental problems in spectroscopy, intramolecular dynamics, intermolecular interactions, and even reactions. SEP provides rotationally pre-selected spectra of vibrationally highly excited molecules undergoing large amplitude motions. A unique feature of SEP is the ability to access systematically a wide variety of extreme excitations localized in various parts of a molecule, and to prepare populations in specific, high vibrational levels. SEP has made it possible to ask and answer specific questions about intramolecular vibrational redistribution and the role of vibrational excitation in chemical reactions.

Book Ultrafast Infrared Vibrational Spectroscopy

Download or read book Ultrafast Infrared Vibrational Spectroscopy written by Michael D. Fayer and published by CRC Press. This book was released on 2013-03-04 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.

Book Intermolecular Forces

    Book Details:
  • Author : Pierre L. Huyskens
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642762603
  • Pages : 490 pages

Download or read book Intermolecular Forces written by Pierre L. Huyskens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of intermolecular forces began over one hundred years ago in 1873 with the famous thesis of van der Waals. In recent decades, knowledge of this field has expanded due to intensive research into both its theoretical and the experimental aspects. This is particularly true for the type of very strong cohesive force stressed in 1920 by Latimer and Rodebush: the hydrogen bond, a phenomenon already outlined in 1912 by Moore and Winemill. Hydrogen bonds exert a profound influence on most of the physical and chemical properties of the materials in which they are formed. Not only do they govern viscosity and electrical conductivity, they also intervene in the chemical reaction path which determines the kinetics of chemical processes. The properties of chemical substances depend to a large extent on intermolecular forces. In spite of this fundamental fact, too little attention is given to these properties both in research and in university teaching. For instance, in the field of pharmaceutical research, about 13000 compounds need to be studied in order to find a single new product that can be successfully marketed. The recognition of the need to optimize industrial research efficiency has led to a growing interest in promoting the study of inter molecular forces. Rising salary costs in industry have encou raged an interest in theoretical ideas which will lead to tailor made materials.

Book Understanding Intermolecular Interactions in the Solid State

Download or read book Understanding Intermolecular Interactions in the Solid State written by Deepak Chopra and published by Royal Society of Chemistry. This book was released on 2018-09-04 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological and computational advances in the past decade have meant a vast increase in the study of crystalline matter in both organic, inorganic and organometallic molecules. These studies revealed information about the conformation of molecules and their coordination geometry as well as the role of intermolecular interactions in molecular packing especially in the presence of different intermolecular interactions in solids. This resulting knowledge plays a significant role in the design of improved medicinal, mechanical, and electronic properties of single and multi-component solids in their crystalline state. Understanding Intermolecular Interactions in the Solid State explores the different techniques used to investigate the interactions, including hydrogen and halogen bonds, lone pair–pi, and pi–pi interactions, and their role in crystal formation. From experimental to computational approaches, the book covers the latest techniques in crystallography, ranging from high pressure and in situ crystallization to crystal structure prediction and charge density analysis. Thus this book provides a strong introductory platform to those new to this field and an overview for those already working in the area. A useful resource for higher level undergraduates, postgraduates and researchers across crystal engineering, crystallography, physical chemistry, solid-state chemistry, supramolecular chemistry and materials science.

Book Masters Theses in the Pure and Applied Sciences

Download or read book Masters Theses in the Pure and Applied Sciences written by W. H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing. house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 25 (thesis year 1980) a total of 10,308 theses titles from 27 Canadian and 214 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. While Volume 25 reports theses submitted in 1980, on occasion, certain universities do report theses submitted in previous years but not reported at the time.

Book Chemical Applications of Atomic and Molecular Electrostatic Potentials

Download or read book Chemical Applications of Atomic and Molecular Electrostatic Potentials written by Peter Politzer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: On March 26-27, 1980, a symposium organized by one of us (P. P. ) was held at the l79th American Chemical Society National ~1eeting in Houston, Texas, under the sponsorship of the Theoretical Chemistry Subdivision of the Division of Physical Chemistry. The symposium was entitled "The Role of the Electrostatic Potential in Chemistry," and it served as a stimulus for this book. The original scope and coverage have been broadened, however; included here, in addition to contributions from the eleven invited symposium speakers and two of the poster-session participants, are four papers that were specially invited for this book. Furthermore, several authors have taken this opportunity to present at least partial reviews of the areas being discussed. Most of the manuscripts were completed in the late spring and early summer of 1980. We hope that this book will achieve two goals: First, we are trying to provide an overall picture, including recent advances, of current chemical research, both fundamental and applied, involving the electrostatic potential. Second, we want to convey an appreci ation of both the powers and also the limitations of the electro static potential approach. In order to achieve these goals, we have selected contributors whose research areas provide a very broad coverage of the field. Throughout the book, we have used a. u.

Book Vibration rotational Spectroscopy and Molecular Dynamics

Download or read book Vibration rotational Spectroscopy and Molecular Dynamics written by Du?an Papou?ek and published by World Scientific. This book was released on 1997 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews the results of vibration-rotational spectroscopy of molecules obtained recently by combining modern computational methods of quantum chemistry with the new techniques of high-resolution rotational and vibration-rotational spectroscopy. It shows for example that the tunneling vibration-rotational spectroscopy of the van der Waals complexes provides a new look at intermolecular forces while the high precision and sensitivity of the submillimeter-wave and Fourier transform microwave spectroscopy make it possible to study complex rotational spectra of molecules in excited vibrational states. New results of high level ab initio quantum chemical computations of vibrational and rotational energy levels and dipole moment functions of unusual molecules will be discussed together with the recent discovery of clustering of energy levels in asymmetric tops. Group theoretical analysis of floppy molecules, especially the tunneling effects in nonrigid molecules, will also be discussed.

Book Intermolecular Forces

    Book Details:
  • Author : A. Pullman
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 9401576580
  • Pages : 562 pages

Download or read book Intermolecular Forces written by A. Pullman and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, April 13-16, 1981

Book Using Steady state Vibrational Spectroscopy to Characterize the Effect that Molecular Environments Have on the Kinetics of Chemical Systems

Download or read book Using Steady state Vibrational Spectroscopy to Characterize the Effect that Molecular Environments Have on the Kinetics of Chemical Systems written by Andrea Giordano and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A goal that unifies all chemists is the desire to understand the intermolecular and intramolecular interactions that occur in a given system. For many chemical systems, we have an understanding of the intramolecular interactions that occur within a molecule, and how these interactions dictate the physical properties of the molecule, such as the dipole moment, color, or the dielectric constant. The intermolecular interactions that occur between molecules and their molecular environment have proven to be more difficult to isolate, due to multiple interactions occurring simultaneously. It is important to understand these interactions between molecules and their molecular environment because such interactions affect nearly every practical chemical system, from biological to industrial applications. Therefore, it is of the upmost importance to understand how the intermolecular interactions can manifest throughout chemical systems. We are interested in separating the multiple contributions to the intermolecular interactions that arise from the molecular environment. To achieve this goal, I developed theoretical and experimental frameworks for determining kinetic parameters of chemical systems using steady-state vibrational spectroscopy, a tool that has proven very powerful for determining the effects of both intramolecular and intermolecular interactions, therefore, we have chosen to focus on using vibrational spectroscopy in my dissertation. I first demonstrate the equivalency between the kinetic information extracted from IR and Raman spectroscopies by obtaining identical activation energies for the ligand site exchange of Fe(CO)3([eta]4-norbornadiene) (FeNBD). These experiments rely upon the extraction of kinetic information from steady-state band shapes and demonstrated that either vibrational spectroscopic technique can be used to extract kinetic information from the band shapes of steady-state spectra. In order to do this, I worked with collaborators to extend the theoretical framework for extracting the rate constant from the band shapes of vibrational spectra to include Raman spectroscopy. The next step towards the goal of separating the multiple contributions to the intermolecular interactions is to categorize these contributions as static effects and dynamic effects. For the purpose of this work, I define static effects as those that arise from solute-solvent interactions that cause changes in the band shape, while dynamic effects are those that arise from changes in the dynamics of a system as a result of interaction with the molecular environment. I establish a way to separate static effects from dynamic effects by analyzing the solvent effects of Fe(CO)3([eta]4-cyclooctatetraene) using solvent-dependent IR spectroscopy. The dynamic effects induced by the solvent environment were analyzed through temperature-dependent Raman experiments of FeNBD in a series of linear alkane solvents. The last part of this dissertation further focused on the consequences of static effects, examining the morphology of conducting polymer films used in thin film devices. We used Raman spectroscopy to characterize the crystallinity of conducting polymer films with and without dopant materials. From this data, we constructed structure-function relationships by correlating the morphology of the polymer film to the overall device performance that will aid in the rational design of materials used in thin film devices. This part of my dissertation was done in collaboration with Prof. Elizabeth von Hauff at The University of Freiburg in Germany. Future experiments will explore the effects confining environments will have on the dynamics of FeNBD. Initial experiments to encapsulated FeNBD into a porous polymer matrix were successful, but there are many potential experiments along this line of reasoning that could be explored, and are discussed in the final chapter of this dissertation. In its entirety, this dissertation will provide the scientific community with a novel approach that combines the ability to measure ground state kinetics using steady-state vibrational spectroscopy with a theoretical framework to analyze the effects the molecular environment induces on the ground state kinetics in chemical systems.

Book Physical  Chemical and Other Properties of Molecules and Crystals

Download or read book Physical Chemical and Other Properties of Molecules and Crystals written by G. E. Leroi and published by . This book was released on 1972 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research is summarized which concerns experimental and theoretical studies of the intra- and intermolecular forces in simple molecules. Vibrational spectroscopy was used to probe the internal vibrations of molecules composed primarily of first row atoms in gaseous and condensed phases, and to observe the hindered rotations and translations that occur as external vibrations (lattice modes) when the molecules interact in the solid state. (Author).

Book Vibrational Dynamics of Aqueous Hydroxide Solutions Studied Using Ultrafast Infrared Spectroscopy

Download or read book Vibrational Dynamics of Aqueous Hydroxide Solutions Studied Using Ultrafast Infrared Spectroscopy written by Aritra Mandal and published by . This book was released on 2015 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid water possesses an extended network of hydrogen bonds that is responsible for many of its interesting properties. Mobility of hydroxide ions in aqueous solutions is much higher compared to the ions of similar size and charge density. A proton can efficiently move from a neighboring water molecule to the hydroxide ion due to the presence of hydrogen bonds, resulting fast structural diffusion of the ion. On the other hand, this hydrogen bonding network of water undergoes fluctuations on femtoseconds to picoseconds timescale, influencing the intertwined hydroxide transport process. Studying the influence of water's hydrogen bonding network on the proton transport process in aqueous hydroxide solutions is experimentally challenging, largely due to the lack of a suitable technique that is sensitive to the changes in the system on few tens of femtoseconds timescale. Vibrations in aqueous hydroxide solutions are sensitive to the strength of hydrogen bonding and hence vibrational frequencies, intensities and line shapes are closely associated with the structure and dynamics of the hydroxide ions. In this thesis, we have employed ultrafast infrared spectroscopy in conjunction with theoretical modeling to understand the nature of the vibrations and their dynamics in aqueous hydroxide solutions. The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800 and 3500 cm-1, which is attributed to the strong interactions of the hydroxide ion with its solvating water molecules. This continuum absorption has limited distinguishable features whose molecular origin holds the key in explaining the vibrational dynamics. We have performed ultrafast transient absorption and 2DIR experiments on aqueous NaOH solutions, by exciting the O-H stretch vibrations and probing the response from 1350-3800 cm-1, using a newly developed sub-70 fs broadband infrared source. By probing the entire mid-infrared continuum absorption of aqueous hydroxide solutions with ultrafast pulses, the broadband infrared source allows us to monitor time-dependent changes in this broad spectral window. These experiments, in conjunction with harmonic vibrational analysis of OH-(H2O)17 clusters, reveal that O-H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. These delocalized vibrations cannot be distinguished based on the local structure of the hydroxide ion. However, they can be classified according to the symmetry defined by the relative phase of vibrations of the O-H bonds hydrogen bonded to the ion. In general, we find the asymmetric O-H stretch vibrations to be more intense and shifted to lower frequencies compared to the symmetric ones. Analysis of transient absorption and waiting time dependent 2DIR spectroscopy shows that the vibrations in aqueous hydroxide solutions relax on 100-300 fs timescale. Alongside, the O-H stretch vibrations originating from the bulk-like water molecules as well as the asymmetric O-H stretch vibrations of the water molecules solvating the hydroxide ion lose their frequency memory within 160-180 fs. Such loss in frequency memory on similar timescales is likely to happen through migration of vibrational excitation between two types of O-H stretch vibrations. Spectral features in strongly hydrogen bonded systems like water and aqueous hydroxide solutions are very broad, particularly the induced absorption features in the transient absorption and 2DIR spectra. With the development of broadband mid-infrared pulses, we are able to detect nonlinear response of these systems in the frequency window of 1350-3800 cm-1, observing >1700 cm-1 broad induced absorption features. Qualitatively, strong coupling between intra- and intermolecular vibrations lead to such broadening. In order to explain the experimental results, we have developed a self-consistent phenomenological model that consists of an intramolecular and an intermolecular vibration, with strong nonlinear coupling between them. We find that the experimental results are reproduced when the coupling between the vibrations is strong enough to yield eigenstates with mixed intra- and intermolecular vibrational character. In such scenarios, the identities of individual intra- and intermolecular vibrational modes are lost.

Book Molecular Orbital Calculations for Biological Systems

Download or read book Molecular Orbital Calculations for Biological Systems written by Anne-Marie Sapse and published by Oxford University Press, USA. This book was released on 1998 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the growing number of researchers in organic chemistry, biochemistry, and molecular biology who would like to augment their experiments with theoretical calculations, this book teaches the use of quantum chemical computer programs without going into the complete mathematical details.