EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Book Introduction to High Dimensional Statistics

Download or read book Introduction to High Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Book Computational Complexity

Download or read book Computational Complexity written by Robert A. Meyers and published by Springer. This book was released on 2011-10-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The recognition that the collective behavior of the whole system cannot be simply inferred from an understanding of the behavior of the individual components has led to the development of numerous sophisticated new computational and modeling tools with applications to a wide range of scientific, engineering, and societal phenomena. Computational Complexity: Theory, Techniques and Applications presents a detailed and integrated view of the theoretical basis, computational methods, and state-of-the-art approaches to investigating and modeling of inherently difficult problems whose solution requires extensive resources approaching the practical limits of present-day computer systems. This comprehensive and authoritative reference examines key components of computational complexity, including cellular automata, graph theory, data mining, granular computing, soft computing, wavelets, and more.

Book Foundations of Data Science

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Book Data Clustering

    Book Details:
  • Author :
  • Publisher : BoD – Books on Demand
  • Release : 2022-08-17
  • ISBN : 183969887X
  • Pages : 128 pages

Download or read book Data Clustering written by and published by BoD – Books on Demand. This book was released on 2022-08-17 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: In view of the considerable applications of data clustering techniques in various fields, such as engineering, artificial intelligence, machine learning, clinical medicine, biology, ecology, disease diagnosis, and business marketing, many data clustering algorithms and methods have been developed to deal with complicated data. These techniques include supervised learning methods and unsupervised learning methods such as density-based clustering, K-means clustering, and K-nearest neighbor clustering. This book reviews recently developed data clustering techniques and algorithms and discusses the development of data clustering, including measures of similarity or dissimilarity for data clustering, data clustering algorithms, assessment of clustering algorithms, and data clustering methods recently developed for insurance, psychology, pattern recognition, and survey data.

Book Regression Graphics

    Book Details:
  • Author : R. Dennis Cook
  • Publisher : John Wiley & Sons
  • Release : 1998-09-30
  • ISBN : 9780471193654
  • Pages : 380 pages

Download or read book Regression Graphics written by R. Dennis Cook and published by John Wiley & Sons. This book was released on 1998-09-30 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zur graphischen Präsentation von Regressionsdaten gibt es seit dem Vormarsch der Computertechnik vielfältige neue Möglichkeiten, die über die klassischen Ansätze hinausgehen. Der Autor betritt mit seinen Ideen häufig Neuland; er illustriert sie mit zahlreichen Beispielen, Diagrammen und Abbildungen (die entsprechenden 3D- und Farbversionen sind über Internet abrufbar). (11/98)

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book High Dimensional Covariance Estimation

Download or read book High Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Book Multimodal Scene Understanding

Download or read book Multimodal Scene Understanding written by Michael Ying Yang and published by Academic Press. This book was released on 2019-07-16 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning

Book Recent Advances and Trends in Nonparametric Statistics

Download or read book Recent Advances and Trends in Nonparametric Statistics written by M.G. Akritas and published by Elsevier. This book was released on 2003-10-31 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods

Book Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications

Download or read book Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications written by Arun Kumar Sangaiah and published by Academic Press. This book was released on 2018-08-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful. - Presents a brief overview of computational intelligence paradigms and its significant role in application domains - Illustrates the state-of-the-art and recent developments in the new theories and applications of CI approaches - Familiarizes the reader with computational intelligence concepts and technologies that are successfully used in the implementation of cloud-centric multimedia services in massive data processing - Provides new advances in the fields of CI for bio-engineering application

Book Data Mining for Bioinformatics

Download or read book Data Mining for Bioinformatics written by Sumeet Dua and published by CRC Press. This book was released on 2012-11-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Big Data in Multimodal Medical Imaging

Download or read book Big Data in Multimodal Medical Imaging written by Ayman El-Baz and published by CRC Press. This book was released on 2019-11-05 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an urgent need to develop and integrate new statistical, mathematical, visualization, and computational models with the ability to analyze Big Data in order to retrieve useful information to aid clinicians in accurately diagnosing and treating patients. The main focus of this book is to review and summarize state-of-the-art big data and deep learning approaches to analyze and integrate multiple data types for the creation of a decision matrix to aid clinicians in the early diagnosis and identification of high risk patients for human diseases and disorders. Leading researchers will contribute original research book chapters analyzing efforts to solve these important problems.

Book Analysis of Multivariate and High Dimensional Data

Download or read book Analysis of Multivariate and High Dimensional Data written by Inge Koch and published by Cambridge University Press. This book was released on 2014 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.

Book Machine Learning Under a Modern Optimization Lens

Download or read book Machine Learning Under a Modern Optimization Lens written by Dimitris Bertsimas and published by . This book was released on 2019 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reliability Assessment Using Stochastic Finite Element Analysis

Download or read book Reliability Assessment Using Stochastic Finite Element Analysis written by Achintya Haldar and published by John Wiley & Sons. This book was released on 2000-05-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.