EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Using Lidar in Wildfire Ecology of the California Sierra Nevada Forests

Download or read book Using Lidar in Wildfire Ecology of the California Sierra Nevada Forests written by Marek K. Jakubowski and published by . This book was released on 2012 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: California's fire suppression policy has dramatically changed Sierra Nevada forests over the last century. Forests are becoming more dense and homogenous, leading to fire regime changes that increase the potential of stand-replacing wildfires over large, continuous areas. To mitigate this problem on public lands, the US Forest Service has proposed to implement strategically placed forest fuel reduction treatments. These treatments have been proved effective in modeled and simulated environments, but their efficacy and impact in real forests is not known. The research described in this dissertation is part of a large multidisciplinary project, known as the Sierra Nevada Adaptive Management Project (SNAMP), that aims to evaluate strategically placed landscape area treatments (SPLATs) in two forests of the Sierra Nevada mountains. Specifically, in this thesis, I investigate the feasibility of using an airborne light detection and ranging (lidar) system to gain accurate information about forest structure to inform wildfire behavior models, forest management, and habitat mapping. First, I investigate the use of lidar data in predicting metrics at the landscape level, specifically to derive surface fuel models and continuous canopy metrics at the plot scale. My results in Chapter 2 indicate that using lidar to predict specific fuel models for FARSITE wildfire behavior model is challenging. However, the prediction of more general fuel models and continuous canopy metrics is feasible and reliable, especially for metrics near the top of the canopy. It is also possible to derive canopy parameters at the individual tree level. In Chapter 3, I compare the ability of two processing methods--object-based image analysis (OBIA) and 3D segmentation of the lidar point cloud--to detect and delineate individual trees. I find that while both methods delineate dominant trees and accurately predict their heights, the lidar-derived polygons more closely resemble the shape of realistic individual tree crowns. Acquiring remotely sensed data at high resolution and over large areas can be expensive, especially in the case of lidar. In Chapter 4, I investigate the ability of lidar data to reliably predict forest canopy metrics at the plot level as the data resolution declines. I show that canopy metrics can be predicted at a reasonable accuracy with data resolutions as low as one pulse per squared meter. These findings will be useful to land managers making cost benefit decisions when acquiring new lidar data. Collectively, the results of this dissertation suggest that remote sensing, and in particular lidar, can reliably and cost-effectively provide forest information across scales--from the individual tree level to the landscape level. These results will be useful for the fire and forest management community in general, as well as being key to the goals of the SNAMP program.

Book Quantifying Forest Structure Parameters and Their Changes from LiDAR Data and Satellite Imagery in the Sierra Nevada

Download or read book Quantifying Forest Structure Parameters and Their Changes from LiDAR Data and Satellite Imagery in the Sierra Nevada written by Qin Ma and published by . This book was released on 2018 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sierra Nevada forests have provided many economic benefits and ecological services to people in California, and the rest of the world. Dramatic changes are occurring in the forests due to climate warming and long-term fire suppression. Accurate mapping and monitoring are increasingly important to understand and manage the forests. Light Detection and Range (LiDAR), an active remote sensing technique, can penetrate the canopy and provide three-dimensional estimates of forest structures. LiDAR-based forest structural estimation has been demonstrated to be more efficient than field measurements and more accurate than those from passive remote sensing, like satellite imagery. Research in this dissertation aims at mapping and monitoring structural changes in Sierra Nevada forests by taking the advantages of LiDAR. We first evaluated LiDAR and fine resolution imagery-derived canopy cover estimates using different algorithms and data acquisition parameters. We suggested that LiDAR data obtained at 1 point/m2 with a scan angle smaller than 12°were sufficient for accurate canopy cover estimation in the Sierra Nevada mix-conifer forests. Fine resolution imagery is suitable for canopy cover estimation in forests with median density but may over or underestimate canopy cover in extremely coarse or dense forests. Then, a new LiDAR-based strategy was proposed to quantify tree growth and competition at individual tree and forest stand levels. Using this strategy, we illustrated how tree growth in two Sierra Nevada forests responded to tree competition, original tree sizes, forest density, and topography conditions; and identified that the tree volume growth was determined by the original tree sizes and competitions, but tree height and crown area growth were mostly influenced by water and space availability. Then, we calculated the forest biomass disturbance in a Sierra Nevada forest induced by fuel treatments using bi-temporal LiDAR data and field measurements. Using these results as references, we found that Landsat imagery-derived vegetation indices were suitable for quantifying canopy cover changes and biomass disturbances in forests with median density. Large uncertainties existed in applying the vegetation indices to quantify disturbance in extremely dense forests or forests only disturbed in the understory. Last, we assessed vegetation losses caused by the American Fire in 2013 using a new LiDAR point based method. This method was able to quantify fire-induced forest structure changes in basal area and leaf area index with lower uncertainties, compared with traditional LiDAR metrics and satellite imagery-derived vegetation indices. The studies presented in this dissertation can provide guidance for forest management in the Sierra Nevada, and potentially serve as useful tools for forest structural change monitoring in the rest of the world.

Book LiDAR Principles  Processing and Applications in Forest Ecology

Download or read book LiDAR Principles Processing and Applications in Forest Ecology written by Qinghua Guo and published by Academic Press. This book was released on 2023-03-10 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: LiDAR Principles, Processing and Applications in Forest Ecology introduces the principles of LiDAR technology and explains how to collect and process LiDAR data from different platforms based on real-world experience. The book provides state-of the-art algorithms on how to extract forest parameters from LiDAR and explains how to use them in forest ecology. It gives an interdisciplinary view, from the perspective of remote sensing and forest ecology. Because LiDAR is still rapidly developing, researchers must use programming languages to understand and process LiDAR data instead of established software. In response, this book provides Python code examples and sample data. Sections give a brief history and introduce the principles of LiDAR, as well as three commonly seen LiDAR platforms. The book lays out step-by-step coverage of LiDAR data processing and forest structure parameter extraction, complete with Python examples. Given the increasing usefulness of LiDAR in forest ecology, this volume represents an important resource for researchers, students and forest managers to better understand LiDAR technology and its use in forest ecology across the world. The title contains over 15 years of research, as well as contributions from scientists across the world. Presents LiDAR applications for forest ecology based in real-world experience Lays out the principles of LiDAR technology in forest ecology in a systematic and clear way Provides readers with state-of the-art algorithms on how to extract forest parameters from LiDAR Offers Python code examples and sample data to assist researchers in understanding and processing LiDAR data Contains over 15 years of research on LiDAR in forest ecology and contributions from scientists working in this field across the world

Book Implications of Shifting Wildfire Regimes for Landscape Pattern and Wildlife Communities in California   s Sierra Nevada Forests

Download or read book Implications of Shifting Wildfire Regimes for Landscape Pattern and Wildlife Communities in California s Sierra Nevada Forests written by Zachary Lowell Steel and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wildfire patterns drive ecological processes including vegetation succession and wildlife community dynamics. Such patterns are changing in California’s forests, likely due to a combination of fire suppression policies and climate change. In order to effectively manage fire-prone forests and wildlife communities that inhabit them, we must better understand the nature of these changes, and how burn patterns influence species’ occurrence on the landscape. The first chapter of this dissertation assesses trends in burn severity in mixed-conifer forests across California. Additionally, burn patterns within forest units administered under policies of full fire suppression were compared to those with a history of managed wildfire, where some fires are managed for ecological/resource benefits. Over a 30-year period, unchanged or very low-severity areas within fire perimeters have decreased proportionally, and have become increasingly fragmented. In contrast, high-severity areas have increased with patches becoming simpler in shape and containing more area far from patch edges. Compared to suppressed units, managed wildfire units lacked an increase in high-severity area, and in some ways were more spatial complexity. The second dissertation chapter examines how avian diversity and composition varies spatially within high-severity patches, and how this changes with post-fire succession. Species richness generally increased with time since fire, and did so rapidly for species associated with early- and mid-seral vegetation. A species group associated with live conifer trees or snags showed declining richness with distance from high-severity patch edge. For some species, avian succession was mediated by distance to patch edge, suggesting that composition of edge communities and interior communities may diverge over time. The third dissertation chapter evaluates how bat species occupancy and community richness varies across the disturbance gradient from unburned to high-severity wildfire. Occurrence for many species was positively associated with greater burn effects, with species richness maximizing in areas of moderate- to high-severity. The observed affinity for more open habitats created by wildfire appears largely independent of species characteristics found to be associated with habitat selection in other contexts. With increasingly large and severe wildfires in California’s forests, we are observing shifts in landscape pattern, successional processes, and the occurrence rates of individual species. Many mobile species such as birds and bats that are adapted to historically frequent fire are able to utilize forests affected by the full range of wildfire affects. However, as species respond to broad ecosystem changes individualistically, community diversity and composition are likely to be affected both locally and across the region.

Book Earth Observation of Wildland Fires in Mediterranean Ecosystems

Download or read book Earth Observation of Wildland Fires in Mediterranean Ecosystems written by Emilio Chuvieco and published by Springer Science & Business Media. This book was released on 2009-09-25 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wildland fires are becoming one of the most critical environmental factors affecting a wide range of ecosystems worldwide. In Mediterranean ecosystems (including also South-Africa, California, parts of Chile and Australia), wildland fires are recurrent phenomena every summer, following the seasonal drought. As a result of changes in traditional land use practices, and the impact of recent climate warming, fires have more negative impacts in the last years, threatening lives, socio-economic and ecological values. The book describes the ecological context of fires in the Mediterranean ecosystems, and provides methods to observe fire danger conditions and fire impacts using Earth Observation and Geographic Information System technologies.

Book Restoring Forest Resilience in the Sierra Nevada Mixed conifer Zone  with a Focus on Measuring Spatial Patterns of Trees Using Airborne Lidar

Download or read book Restoring Forest Resilience in the Sierra Nevada Mixed conifer Zone with a Focus on Measuring Spatial Patterns of Trees Using Airborne Lidar written by Sean Medeiros Alexander Jeronimo and published by . This book was released on 2018 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation I present three studies incorporating lidar data into different aspects of forest restoration. All studies use lidar individual tree detection as source data, in part to enable making measurements of tree spatial patterns in terms of tree clumps and canopy openings. This common focus exists because spatial patterns of trees influence fire and insect behavior, snow retention, tree regeneration, and other key ecosystem functions and services for which humans manage forests. In Chapter 1 I sought to provide this dataset by asking these questions: (1) What is the geographic and environmental distribution of restored active-fire forest patches in the Sierra Nevada mixed-conifer zone? (2) What are the ranges of variation in structure and spatial patterns across restored patches? (3) How do density, tree clumping, and canopy opening patterns vary by topography and climate in restored patches? I analyzed fire history and environmental conditions over 10.8 million ha, including 3.9 million ha in the Sierra Nevada mixed-conifer zone, and found that the 30,379 ha of restored patches were distributed throughout the range but were more abundant on National Park lands (81% of restored areas) than National Forest lands and were positively correlated with lightning strike density. Furthermore, 33% of restored areas were located in western Yosemite National Park and met our criteria for inclusion in this study only after being burned at low and moderate severity in the 2013 Rim Fire. Lidar-measured ranges of variation in reference condition structure were broad, with density ranging from 6-320 trees ha−1 (median 107 trees ha−1), basal area from 2-113 m2 ha−1 (median 21 m2 ha−1), average size of closely associated tree clumps from 1 to 207 trees (median 3.1 trees), and average percent of stand area >6 m from the nearest canopy ranging from 0% to 100% (median 5.1%). These ranges matched past studies reporting density and spatial patterns of contemporary and historical active-fire reference stands in the Sierra Nevada, except this study observed longer tails on distributions due to the spatial completeness of lidar sampling. Reference areas in middle-elevation climate zones had lower density (86 vs. 121 trees ha-1), basal area, (13.7 vs. 31 m2 ha-1), and mean clump size (2.7 vs. 4.0 trees) compared to lower- and higher-elevation classes, while ridgetops had lower density (101 vs. 115 trees ha-1), basal area (19.6 vs. 24.1 m2 ha-1), and mean clump size (3.0 vs. 3.3 trees) but more open space (7.4% vs. 5.1%) than other landforms. In Chapter 2 I developed new methods for integrating lidar data into silvicultural planning at treatment unit and project area scales, with a focus on dry forest restoration treatments. At the stand scale my objective was to delineate the decision space for prescription parameters like density, basal area, and spatial patterns given the soft constraints of reference conditions and the hard constraints of possible transitions given current structure. At the landscape scale my objective was to provide a framework for selecting from available treatment options, stand by stand, to meet different landscape-level goals. I applied the new methods to a case study area in the Lake Tahoe Basin, California and asked in this context: How do structural departures from reference conditions and associated treatment prescriptions vary with topographic position and aspect? I found that ridges and southwest-facing slopes in the study area had a greater degree of departure from the reference envelope and required more density reduction compared to valleys and northeast-facing slopes. In Chapter 3 I used pre- and post-Rim Fire data from the 25.6 ha Yosemite Forest Dynamics Plot (YFPD) to build a model of tree mortality predicted from lidar individual tree detection structural metrics. I calculated metrics at the scale of lidar-detected trees (termed tree-approximate objects, TAOs), at the scale of 0.1 ha plots centered on each TAO, and at the 90×90 m neighborhood scale. I used these to predict TAO mortality at the neighborhood scale and TAO mortality class – immediate or delayed mortality – at the TAO scale. I also tested the inclusion of a set of topoedaphic and burn weather predictors as well as a cross-scale interaction term between the TAO mortality model and the neighborhood-level mortality model. I asked these questions: (1) How does mortality progress 1-4 years post-fire in terms of rates, demographics, and agents? (2) What elements of forest structure and pattern predict immediate and delayed post-fire mortality at scales from TAOs to neighborhoods? (3) How does the prevalence of different mortality agents vary with changes in the important fine-scale predictors of fire mortality? I found that smaller trees were killed in the first year with a 40% mortality rate and the average diameter of killed trees increased each subsequent year while the mortality rate decreased. The topoedaphic and burn weather predictors as well as the cross-scale interaction improved model fit and parsimony, but that the improvement was directional, i.e., including neighborhood-level information improved the TAO-level model but not vice-versa. Important predictors fell into categories of fuel amount, fuel configuration, and burning conditions. Amounts of crown damage for immediately killed trees were higher for TAOs shorter than 51 m and in 0.1 ha areas where mean clump sizes was less than 21 TAOs. The amount of delayed mortality that was directly fire-related was higher when TAO crown base heights were less than 28 m and TAO density in 0.1 ha areas was greater than 170 TAOs ha-1. Crown base heights over 18 m and local TAO density of less than 180 TAOs ha-1 had more beetle kill and less rot. The model performed similarly well on an independent validation dataset of 48 0.25 ha plots spanning the footprint of the Rim Fire within Yosemite as on the YFDP training data, indicating that the model is widely applicable.

Book Not Seeing the Forest for the Points

Download or read book Not Seeing the Forest for the Points written by Heather Anuhea Kramer and published by . This book was released on 2016 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forest and fire ecology have long utilized remote sensing datasets to learn more about landscapes. Advances in gps spatial accuracy, GIS software capabilities, computing power, and remote sensing technology and software, as well as increases in the spatial and temporal resolution of remote sensing products, have made remote sensing a critical component of forest and fire ecology. Aerial light detection and ranging (LiDAR) is a fast-growing active remote-sensing technology that can be mined for detailed structural information about forests. These data are utilized in the fields of hydrology, forest ecology, silviculture, wildland fire ecology, wildlife ecology, and habitat modeling. LiDAR coverage has also become increasingly common, yet still contains much untapped potential. Despite widespread research that derived copious valuable metrics from aerial LiDAR, few of these metrics are available to managers due to a significant knowledge and software barrier for LiDAR processing. Even when LiDAR is utilized to derive more complex metrics by scientists and LiDAR experts, metrics are often predictions of plot-based data across the landscape. While these metrics are useful, LiDAR can offer so much more. Because it holds information about forest structure in 3 dimensions, new metrics can be derived that capture the full complexity of forest structure. I explore ways in which managers can use the plot network and data layers already available to them to derive large tree density, a metric that is critical for habitat modeling for many species, including the California spotted owl. I also explore the utility of LiDAR for estimating ladder fuels that carry fire from the ground into the canopy. Because there was no reliable method for quantifying these fuels, I also developed a plot-based methodology to collect these data. My dissertation work aims to increase LiDAR accessibility to managers and to develop new ways to use LiDAR to solve old problems. While there is much more work to be done, I am excited to share my work with LiDAR experts and forest managers, and hope that my findings improve the way we use LiDAR, the way we manage forests, and the way that we model and manage for wildland fire.

Book Fire in California s Ecosystems

Download or read book Fire in California s Ecosystems written by Jan W. van Wagtendonk and published by Univ of California Press. This book was released on 2018-06-08 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fire in California’s Ecosystems describes fire in detail—both as an integral natural process in the California landscape and as a growing threat to urban and suburban developments in the state. Written by many of the foremost authorities on the subject, this comprehensive volume is an ideal authoritative reference tool and the foremost synthesis of knowledge on the science, ecology, and management of fire in California. Part One introduces the basics of fire ecology, including overviews of historical fires, vegetation, climate, weather, fire as a physical and ecological process, and fire regimes, and reviews the interactions between fire and the physical, plant, and animal components of the environment. Part Two explores the history and ecology of fire in each of California's nine bioregions. Part Three examines fire management in California during Native American and post-Euro-American settlement and also current issues related to fire policy such as fuel management, watershed management, air quality, invasive plant species, at-risk species, climate change, social dynamics, and the future of fire management. This edition includes critical scientific and management updates and four new chapters on fire weather, fire regimes, climate change, and social dynamics.

Book Wildland Fires and Air Pollution

Download or read book Wildland Fires and Air Pollution written by Andrzej Bytnerowicz and published by Elsevier. This book was released on 2008-10-06 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interaction between smoke and air pollution creates a public health challenge. Fuels treatments proposed for National Forests are intended to reduce fuel accumulations and wildfire frequency and severity, as well as to protect property located in the wild land-urban interface. However, prescribed fires produce gases and aerosols that have instantaneous and long-term effects on air quality. If fuels treatment are not conducted, however, then wild land fires become more severe and frequent causing worse public health and wellfare effects. A better understanding of air pollution and smoke interactions is needed in order to protect the public health and allow for socially and ecologically acceptable use of fire as a management tool. Wildland Fires and Air Pollution offers such an understanding and examines innovative wide-scale monitoring efforts (field and remotely sensed), and development of models predicting spatial and temporal distribution of air pollution and smoke resulting from forests fires and other sources. Collaborative effort of an international team of scientists High quality of invited chapters Full colour

Book 3D Remote Sensing Applications in Forest Ecology

Download or read book 3D Remote Sensing Applications in Forest Ecology written by Hooman Latifi and published by MDPI. This book was released on 2019-11-19 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed.

Book Simulating the Effects of Climate Change  Wildfire and Fuel Treatment on Sierra Nevada Forests

Download or read book Simulating the Effects of Climate Change Wildfire and Fuel Treatment on Sierra Nevada Forests written by Shuang Liang and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Sierra Nevada forests represent a major ecological and economic resource for the state of California. Changes in climate and disturbance regimes, compounded with changes in forest structure from fire-exclusion, pose a critical challenge to managing Sierran forests for sustained carbon (C) sequestration and ecosystem services. My dissertation research sought to improve our understanding of how changing climate and disturbance will affect forest ecosystems in the Sierra Nevada by accounting for species-specific dynamics and interacting spatial processes that were underrepresented in landscape projections. Given the diverse tree species and forest types that differ in their optimal climate for growth and tolerance of stressors, I simulated forest dynamics in the Sierra Nevada under projected future climate and area burned as well as alternative management strategies with a species-specific, spatially explicit forest landscape model. First, I quantified how projected climate-wildfire interactions would affect forest communities and associated C dynamics. Here, results suggest that, across the Sierra Nevada, forest communities may not change as intact unit over the 21st Century and potential exists for substantial community change and C sequestration decline beyond this century. Then, I assessed the long-term successional trajectory and the ability of the system to sequester C beyond the 21st Century. Assuming climate and wildfire distributions equilibrate at late-century conditions, the results show a committed decline in forest cover and C carrying capacity, suggesting a steep reduction in the contribution of Sierra Nevada forest to the terrestrial C sink. Finally, I quantified how large-scale restoration treatments would alter the effects of changing climate and wildfire on forest C balance. I found that widespread application of fuel treatments would confer greater forest C stock stability. This work offers an improved understanding of how changing environmental conditions will affect the forest ecosystems in the Sierra Nevada and provides insights into using large-scale management strategy to manage the Sierran landscape under novel conditions.

Book First Order Fire Effects Model

Download or read book First Order Fire Effects Model written by Elizabeth D. Reinhardt and published by . This book was released on 1997 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: A First Order Fire Effects Model (FOFEM) was developed to predict the direct consequences of prescribed fire and wildfire. FOFEM computes duff and woody fuel consumption, smoke production, and fire-caused tree mortality for most forest and rangeland types in the United States. The model is available as a computer program for PC or Data General computer.

Book Forestry Applications of Airborne Laser Scanning

Download or read book Forestry Applications of Airborne Laser Scanning written by Matti Maltamo and published by Springer Science & Business Media. This book was released on 2014-04-08 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Airborne laser scanning (ALS) has emerged as one of the most promising remote sensing technologies to provide data for research and operational applications in a wide range of disciplines related to management of forest ecosystems. This book provides a comprehensive, state-of-the-art review of the research and application of ALS in a broad range of forest-related disciplines, especially forest inventory and forest ecology. However, this book is more than just a collection of individual contributions – it consists of a well-composed blend of chapters dealing with fundamental methodological issues and contributions reviewing and illustrating the use of ALS within various domains of application. The reviews provide a comprehensive and unique overview of recent research and applications that researchers, students and practitioners in forest remote sensing and forest ecosystem assessment should consider as a useful reference text.

Book LiDAR Remote Sensing and Applications

Download or read book LiDAR Remote Sensing and Applications written by Pinliang Dong and published by CRC Press. This book was released on 2017-12-12 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for both undergraduate and graduate students in the fields of geography, forestry, ecology, geographic information science, remote sensing, and photogrammetric engineering, LiDAR Remote Sensing and Applications expertly joins LiDAR principles, data processing basics, applications, and hands-on practices in one comprehensive source. The LiDAR data within this book is collected from 27 areas in the United States, Brazil, Canada, Ghana, and Haiti and includes 183 figures created to introduce the concepts, methods, and applications in a clear context. It provides 11 step-by-step projects predominately based on Esri’s ArcGIS software to support seamless integration of LiDAR products and other GIS data. The first six projects are for basic LiDAR data visualization and processing and the other five cover more advanced topics: from mapping gaps in mangrove forests in Everglades National Park, Florida to generating trend surfaces for rock layers in Raplee Ridge, Utah. Features Offers a comprehensive overview of LiDAR technology with numerous applications in geography, forestry and earth science Gives necessary theoretical foundations from all pertinent subject matter areas Uses case studies and best practices to point readers to tools and resources Provides a synthesis of ongoing research in the area of LiDAR remote sensing technology Includes carefully selected illustrations and data from the authors' research projects Before every project in the book, a link is provided for users to download data

Book Climate  Fire and Forest Management in the Sierra Nevada

Download or read book Climate Fire and Forest Management in the Sierra Nevada written by Jens Turner Stevens and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Montane coniferous forests in western North America are experiencing rapid environmental change, due in part to increasing fire severity and decreasing winter snowpack. Many of these forests experienced frequent low-severity fires prior to intensive logging and fire suppression during the nineteenth and twentieth centuries, which have led to increased fuel loads and increased dominance by fire-sensitive, shade-tolerant tree species. Forest managers seeking to mitigate increases in fire size and severity are increasingly implementing fuel-reduction treatments, which target small trees and surface fuels for removal. However, the ecological effects of these treatments on subsequent wildfire behavior, forest resilience, understory plant community dynamics, and plant invasions have not been well documented. In Chapter 1, I utilized a large-scale natural experiment to investigate the effects of recent fuel treatments on subsequent wildfire severity and structural resilience, in twelve different yellow pine and mixed-conifer forest sites in the mountains of eastern California. By quantifying forest structure in treated and adjacent untreated stands, both after wildfire and without wildfire, I demonstrated that treatments reduced the amount of structural change caused by wildfire, as a result of their moderating effect on fire severity. Two years post-wildfire, treated stands resembled pre-wildfire stands, in that they had greater tree litter cover, more tree seedling regeneration, less shrub cover and recruitment, and less bare soil relative to untreated stands, which generally burned at very high severity. In Chapter 2, I used the same network of twelve sites to test whether the gradient of disturbance severity, from untreated and unburned stands to high-severity wildfire stands, generated predictable patterns of understory plant community composition and diversity. I incorporated information on the evolutionary history of the native flora to show that increasing disturbance severity favored understory species with southern biogeographic affinity. Analysis of leaf functional traits indicated that increases in microclimatic water deficit in high-severity stands favored species with reduced specific leaf area relative to their leaf Nitrogen concentration. Native plant diversity at the stand scale was greatest in treated stands that subsequently burned in a wildfire, however this diversity peak was due to increased plot-scale alpha diversity relative to undisturbed stands, and increased between-plot beta diversity relative to high-severity wildfire stands. Conversely, exotic plant diversity peaked in high-severity wildfire stands that had not been previously treated. In Chapter 3, I investigated the population-level response of non-native species to interactions between forest harvesting strategies, prescribed fire, and winter snowpack depth using a transplant experiment with two non-native shrubs: Scotch broom (Cytisus scoparius L. (Link)) and Spanish broom (Spartium junceum L.). Both species had the strongest positive population growth responses to canopy thinning, rather than clearcuts or dense canopies. Despite positive effects of prescribed fire on seed germination, frequent prescribed fire was shown to decrease population growth rates for both species. However, experimental snowpack reductions led to increased winter survival by both species, which translated into strong positive effects on population growth rates. Under a future climate scenario where winter snowpack levels increase in elevation, middle-elevation forests that experience fuel treatments may therefore be at increased risk of invasion by non-native plants due to synergies between climate and management regimes.

Book Ecosystems of California

    Book Details:
  • Author : Harold Mooney
  • Publisher : Univ of California Press
  • Release : 2016-01-19
  • ISBN : 0520278801
  • Pages : 1008 pages

Download or read book Ecosystems of California written by Harold Mooney and published by Univ of California Press. This book was released on 2016-01-19 with total page 1008 pages. Available in PDF, EPUB and Kindle. Book excerpt: This long-anticipated reference and sourcebook for CaliforniaÕs remarkable ecological abundance provides an integrated assessment of each major ecosystem typeÑits distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of CaliforniaÕs ecological patterns and the history of the stateÕs various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the stateÕs ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of CaliforniaÕs environment and curious naturalists.

Book Recovering from Wildfire  A Guide for California s Forest Landowners Recovering from Wildfire  A Guide for California s Forest Landowners

Download or read book Recovering from Wildfire A Guide for California s Forest Landowners Recovering from Wildfire A Guide for California s Forest Landowners written by and published by UCANR Publications. This book was released on with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: