EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reinforcement Learning  second edition

Download or read book Reinforcement Learning second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging  and Graphs in Biomedical Image Analysis

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Graphs in Biomedical Image Analysis written by Carole H. Sudre and published by Springer Nature. This book was released on 2020-10-05 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging  and Perinatal Imaging  Placental and Preterm Image Analysis

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Perinatal Imaging Placental and Preterm Image Analysis written by Carole H. Sudre and published by Springer Nature. This book was released on 2021-09-30 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2021, and the 6th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, PIPPI 2021, held in conjunction with MICCAI 2021. The conference was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic.For UNSURE 2021, 13 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. PIPPI 2021 accepted 14 papers from the 18 submissions received. The workshop aims to bring together methods and experience from researchers and authors working on these younger cohorts and provides a forum for the open discussion of advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period.

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Book THE ART OF INTELLIGENT MACHINES UNLEASHING THE POWER OF MACHINE LEARNING

Download or read book THE ART OF INTELLIGENT MACHINES UNLEASHING THE POWER OF MACHINE LEARNING written by Mr. Om Prakash Singh and published by Xoffencerpublication. This book was released on 2023-08-14 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent machines, also known as artificial intelligence (AI) systems, are a fascinating area of study and development that integrates computer science, mathematics, and cognitive science to create machines that can simulate human-like intellect and conduct. This field of study and development aims to produce machines that can create intelligent machines that can simulate human-like intelligence and behavior. These computers are programmed to perceive, learn, reason, and make judgments in a manner that is either comparable to or superior to the cognitive powers of humans. Machine learning is a subsection of artificial intelligence that focuses on the development of algorithms and models that enable computers to learn from and make predictions or judgments based on data. Intelligent machines are constructed on top of this foundation, which is the basis of machine learning. Intelligent machines are able to analyze huge amounts of data, recognize patterns in that data, and make decisions based on that analysis through the use of machine learning techniques such as neural networks, decision trees, and reinforcement learning. The capacity to learn new things and advance themselves over time is one of the most distinguishing features of intelligent machines. They are able to gain knowledge from their experiences and modify either their behavior or their models in order to get better results. This skill is frequently referred regarded as "artificial intelligence" since these machines can demonstrate features that we generally associate with human intellect, such as problem-solving, the ability to grasp plain language, and visual perception. The applications for intelligent machines are quite diverse and can be found in a variety of domains. They are used in a variety of industries, including the healthcare sector, the financial sector, the transportation sector, and the manufacturing sector, to automate processes, improve decision-making, and increase efficiency. In the field of medicine, for instance, intelligent robots can be of assistance in the process of disease diagnosis, the analysis of medical imaging, and the development of individualized treatment regimens.

Book Reinforcement Learning and Dynamic Programming Using Function Approximators

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging written by Carole H. Sudre and published by Springer Nature. This book was released on 2022-09-17 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Fourth Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2022, held in conjunction with MICCAI 2022. The conference was hybrid event held from Singapore. For this workshop, 13 papers from 22 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

Book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image Based Procedures

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image Based Procedures written by Hayit Greenspan and published by Springer Nature. This book was released on 2019-10-10 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.

Book Uncertainty Modelling in Data Science

Download or read book Uncertainty Modelling in Data Science written by Sébastien Destercke and published by Springer. This book was released on 2018-07-24 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

Book Mastering Machine Learning  A Comprehensive Guide to Success

Download or read book Mastering Machine Learning A Comprehensive Guide to Success written by Rick Spair and published by Rick Spair. This book was released on with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Welcome to "Mastering Machine Learning: A Comprehensive Guide to Success." In this book, we embark on an exciting journey into the world of machine learning (ML), exploring its concepts, techniques, and practical applications. Whether you are a beginner taking your first steps into the field or an experienced practitioner seeking to deepen your knowledge, this comprehensive guide will equip you with the tools, strategies, and insights needed to succeed in the ever-evolving landscape of ML. Machine learning is a rapidly advancing field that has revolutionized industries and transformed the way we tackle complex problems. From personalized recommendations and speech recognition systems to autonomous vehicles and medical diagnostics, machine learning has become an integral part of our daily lives. Its ability to analyze vast amounts of data, identify patterns, and make predictions has paved the way for groundbreaking advancements across various domains. However, mastering machine learning requires more than just understanding the algorithms and techniques. It requires a holistic approach that encompasses data collection and preparation, exploratory data analysis, model building, evaluation, deployment, and continuous learning. It also demands a deep understanding of the ethical and social implications of machine learning, ensuring responsible and fair use of this powerful technology. In this book, we have carefully crafted 20 comprehensive chapters that cover a wide range of topics, from the fundamentals of machine learning to advanced techniques and future trends. Each chapter provides a deep dive into a specific aspect of machine learning, offering tips, recommendations, and strategies for success. You will learn about various algorithms, data preprocessing techniques, model evaluation methods, interpretability approaches, and much more. Throughout the book, we emphasize a practical approach to machine learning. Real-world examples, case studies, and hands-on exercises are incorporated to help you gain a deeper understanding of the concepts and apply them to your own projects. We believe that active learning and practical experience are crucial for mastering machine learning, and we encourage you to explore, experiment, and build your own models. While this book serves as a comprehensive guide, it is important to note that machine learning is a rapidly evolving field. New algorithms, techniques, and technologies are constantly emerging, and staying up-to-date with the latest advancements is essential. However, the principles and foundations discussed in this book will provide you with a solid framework to adapt and navigate the ever-changing landscape of machine learning. Whether you are an aspiring data scientist, a software engineer, a researcher, or a business professional, this book is designed to be your trusted companion in your journey to mastering machine learning. By the time you reach the end, you will have gained a deep understanding of the fundamental concepts, acquired practical skills for applying machine learning in real-world scenarios, and developed the mindset needed to tackle complex challenges and drive innovation. Get ready to embark on an exciting adventure into the world of machine learning. Let's begin our journey towards mastering machine learning and unlocking its full potential. Happy learning!

Book ECAI 2023

    Book Details:
  • Author : K. Gal
  • Publisher : IOS Press
  • Release : 2023-10-18
  • ISBN : 164368437X
  • Pages : 3328 pages

Download or read book ECAI 2023 written by K. Gal and published by IOS Press. This book was released on 2023-10-18 with total page 3328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.

Book Treatise on Water Science

Download or read book Treatise on Water Science written by and published by Newnes. This book was released on 2010-09-01 with total page 2131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth

Book Handbook of Reinforcement Learning and Control

Download or read book Handbook of Reinforcement Learning and Control written by Kyriakos G. Vamvoudakis and published by Springer Nature. This book was released on 2021-06-23 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Book The 37th Annual Conference on Power System and Automation in Chinese Universities  CUS EPSA

Download or read book The 37th Annual Conference on Power System and Automation in Chinese Universities CUS EPSA written by Pingliang Zeng and published by Springer Nature. This book was released on 2023-04-24 with total page 1306 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book includes original, peer-reviewed research papers from the 37th Annual Conference of Power System and Automation in Chinese Universities (CUS-EPSA), held in Hangzhou, China on October 23-25, 2022. These papers cover topics as Evolution and development path of the power system, Resilience assessment, analysis and planning of power system, Power system planning and reliability, Modelling and simulation of novel power system, Power electronic for power system stability analysis, Power system relay protection and automation and so on. The papers included in this proceedings share the latest research results and practical application examples on the methodologies and algorithms in these areas, which makes the book a valuable reference for researchers, engineers, and university students.

Book Human in the Loop Machine Learning

Download or read book Human in the Loop Machine Learning written by Robert Munro and published by Simon and Schuster. This book was released on 2021-07-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

Book A Tutorial on Thompson Sampling

Download or read book A Tutorial on Thompson Sampling written by Daniel J. Russo and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this tutorial is to explain when, why, and how to apply Thompson sampling.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.