EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ultrafast dynamics in helium nanodroplets probed by XUV spectroscopy and x ray imaging

Download or read book Ultrafast dynamics in helium nanodroplets probed by XUV spectroscopy and x ray imaging written by Camila Bacellar C Silveira and published by . This book was released on 2005 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helium nanodroplets are the smallest known objects exhibiting superfluidity, and they provide a unique cryogenic matrix for high-resolution spectroscopy and ultracold chemistry applications. The relatively simple electronic structure of helium atoms and the homogeneity of the quantum fluid clusters make them excellent model systems for the study of electronic structures and dynamics in complex systems and the emergence of collective phenomena. Coupled electronic-nuclear dynamics in laser-excited helium nanodroplets are studied in the time-domain in two distinctly different excitation regimes following either single XUV-photon excitation or strong-field ionization by a near-infrared (NIR) laser pulse. Femtosecond time- resolved XUV photoelectron spectroscopy and femtosecond time-resolved X-ray coherent diffractive imaging are employed to monitor electronic relaxation dynamics in neutral droplets and the emergence and evolution of a nanoplasma in strong-field ionized droplets, respectively. Electronically excited pure and doped He droplets are prepared using femtosecond XUV pump pulses produced by high-order harmonic generation. The excited states and subsequent relaxation dynamics are probed by ionization of transient species with a femtosecond UV probe- pulse. Pump-probe time delay-dependent photoelectron kinetic energy distributions are measured using velocity map imaging. In pure droplets excited with 23.7 eV, three dynamic pathways are identified: interband relaxation from the initially excited 1s3p,1s4p manifold to the 1s2p band, further relaxation within the 1s2p Rydberg band and rapid atomic reconfiguration involving formation of Rydberg-excited (Hen)* cores within the droplet. Ongoing efforts towards understanding energy- and charge-transfer mechanisms between the host droplets and dopant atoms are discussed. New high-harmonic generation schemes were implemented in order to directly access the lower 1s2p droplet resonances. Droplets doped with a small amounts of Kr and Ne atoms (ndopant/ndroplet

Book Ultrafast Dynamics in Helium Nanodroplets Probed by Femtosecond Time resolved EUV Photoelectron Imaging

Download or read book Ultrafast Dynamics in Helium Nanodroplets Probed by Femtosecond Time resolved EUV Photoelectron Imaging written by and published by . This book was released on 2010 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays

Book Molecules in Superfluid Helium Nanodroplets

Download or read book Molecules in Superfluid Helium Nanodroplets written by Alkwin Slenczka and published by Springer Nature. This book was released on 2022-05-28 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy.

Book Probing Ultrafast Electron Dynamics in Helium Nanodroplets with Deep Learning Assisted Diffraction Imaging

Download or read book Probing Ultrafast Electron Dynamics in Helium Nanodroplets with Deep Learning Assisted Diffraction Imaging written by Julian Claudius Zimmermann and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanodroplets

    Book Details:
  • Author : Zhiming M. Wang
  • Publisher : Springer Science & Business Media
  • Release : 2014-01-08
  • ISBN : 1461494729
  • Pages : 392 pages

Download or read book Nanodroplets written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2014-01-08 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanodroplets, the basis of complex and advanced nanostructures such as quantum rings, quantum dots and quantum dot clusters for future electronic and optoelectronic materials and devices, have attracted the interdisciplinary interest of chemists, physicists and engineers. This book combines experimental and theoretical analyses of nanosized droplets which reveal many attractive properties. Coverage includes nanodroplet synthesis, structure, unique behaviors and their nanofabrication, including chapters on focused ion beam, atomic force microscopy, molecular beam epitaxy and the "vapor-liquid- solid" route. Particular emphasis is given to the behavior of metallic nanodroplets, water nanodroplets and nanodroplets in polymer and metamaterial nanocomposites. The contributions of leading scientists and their research groups will provide readers with deeper insight into the chemical and physical mechanisms, properties, and potential applications of various nanodroplets.

Book Nanoscale Photonic Imaging

Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Book Many Particle Spectroscopy of Atoms  Molecules  Clusters  and Surfaces

Download or read book Many Particle Spectroscopy of Atoms Molecules Clusters and Surfaces written by J. Berakdar and published by Springer Science & Business Media. This book was released on 2001-07-31 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early days of modem physics spectroscopic techniques have been employed as a powerful tool to assess existing theoretical models and to uncover novel phenomena that promote the development of new concepts. Conventionally, the system to be probed is prepared in a well-defined state. Upon a controlled perturbation one measures then the spectrum of a single particle (electron, photon, etc.) emitted from the probe. The analysis of this single particle spectrum yields a wealth of important information on the properties of the system, such as optical and magnetic behaviour. Therefore, such analysis is nowadays a standard tool to investigate and characterize a variety of materials. However, it was clear at a very early stage that real physical compounds consist of many coupled particles that may be excited simultaneously in response to an external perturbation. Yet, the simultaneous (coincident) detection of two or more excited species proved to be a serious technical obstacle, in particular for extended electronic systems such as surfaces. In recent years, however, coincidence techniques have progressed so far as to image the multi-particle excitation spectrum in an impressive detail. Correspondingly, many-body theoretical concepts have been put forward to interpret the experimental findings and to direct future experimental research. This book gives a snapshot of the present status of multi-particle coincidence studies both from a theoretical and an experimental point of view. It also includes selected topical review articles that highlight the achievements and the power of coincident techniques.

Book Synchrotron Light Sources and Free Electron Lasers

Download or read book Synchrotron Light Sources and Free Electron Lasers written by Eberhard J. Jaeschke and published by Springer. This book was released on 2016-05-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Book Progress in Ultrafast Intense Laser Science XIII

Download or read book Progress in Ultrafast Intense Laser Science XIII written by Kaoru Yamanouchi and published by Springer. This book was released on 2017-12-22 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thirteenth volume in the PUILS series covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The series delivers up-to-date reviews of progress in ultrafast intense laser science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Typically, each chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.

Book Extreme States of Matter

Download or read book Extreme States of Matter written by Vladimir E. Fortov and published by Springer. This book was released on 2015-12-26 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams, electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

Book The Identification of Molecular Spectra

Download or read book The Identification of Molecular Spectra written by Reginald William Blake Pearse and published by . This book was released on 1941 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unimolecular Reaction Dynamics

Download or read book Unimolecular Reaction Dynamics written by Tomas Baer and published by Oxford University Press. This book was released on 1996-06-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a penetrating and comprehensive description of energy selected reactions from a theoretical as well as experimental view. Three major aspects of unimolecular reactions involving the preparation of the reactants in selected energy states, the rate of dissociation of the activated molecule, and the partitioning of the excess energy among the final products, are fully discussed with the aid of 175 illustrations and over 1,000 references, most from the recent literature. Examples of both neutral and ionic reactions are presented. Many of the difficult topics are discussed at several levels of sophistication to allow access by novices as well as experts. Among the topics covered for the first time in monograph form is a discussion of highly excited vibrational/rotational states and intramolecular vibrational energy redistribution. Problems associated with the application of RRKM theory are discussed with the aid of experimental examples. Detailed comparisons are also made between different statistical models of unimolecular decomposition. Both quantum and classical models not based on statistical assumptions are described. Finally, a chapter devoted to the theory of product energy distribution includes the application of phase space theory to the dissociation of small and large clusters. The work will be welcomed as a valuable resource by practicing researchers and graduate students in physical chemistry, and those involved in the study of chemical reaction dynamics.

Book Molecular Beams in Physics and Chemistry

Download or read book Molecular Beams in Physics and Chemistry written by Bretislav Friedrich and published by Springer Nature. This book was released on 2021-06-19 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.

Book Molecular Spectroscopy and Quantum Dynamics

Download or read book Molecular Spectroscopy and Quantum Dynamics written by Roberto Marquardt and published by Elsevier. This book was released on 2020-09-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure

Book Quantum Mechanics in Chemistry

Download or read book Quantum Mechanics in Chemistry written by George C. Schatz and published by Courier Corporation. This book was released on 2012-04-30 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced graduate-level text looks at symmetry, rotations, and angular momentum addition; occupation number representations; and scattering theory. Uses concepts to develop basic theories of chemical reaction rates. Problems and answers.

Book Synchrotron Radiation Instrumentation

Download or read book Synchrotron Radiation Instrumentation written by Jae-Young Choi and published by American Institute of Physics. This book was released on 2007-02-27 with total page 1154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The SRI2006 Proceedings features the most recent developments in present synchrotron radiation sources. It also features up-to-date free electron lasers atphoton energies from the infrared to hard X-rays, beamline instrumentation to transport the radiation to the experiments, as well as experimental techniques to utilize it. Further included are recent experimental results in synchrotron radiation sciences.

Book Molecules in Laser Fields

Download or read book Molecules in Laser Fields written by André D. Bandrauk and published by CRC Press. This book was released on 1993-12-14 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the major advances in both intense laser fields phenomena and laser control of photochemical reactions - highlighting experimental and theoretical research on the interaction of simple molecules with intense laser fields. The book introduces new concepts such as above-threshold ionization (ATI), above-threshold dissociation (ATD), laser-induced avoided crossings, and coherent control.