Download or read book Two Dimensional Crystals written by A. G. Naumovets and published by Elsevier. This book was released on 2012-12-02 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained, tutorial introduction to two-dimensional crystal science and technology. Including concise descriptions of experimental methods and results from fundamental theoretical concepts, this book covers a broad range of two-dimensional structures--from overlayers to freestanding films. All those with an active interest in surface science and statistical physics will find this book to be an essential reference work. - Presents a coherent overview of experimental methods and theoretical background of two-dimensional crystal physics - Provides a tutorial overview of continuous melting of two-dimensional crystals, roughening transitions, wetting phenomena, and commensurate-incommensurate transitions
Download or read book Probing the Response of Two Dimensional Crystals by Optical Spectroscopy written by Yilei Li and published by Springer. This book was released on 2015-11-09 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.
Download or read book Fabrication and Physical Properties of Novel Two dimensional Crystal Materials Beyond Graphene Germanene Hafnene and PtSe2 written by Linfei Li and published by Springer Nature. This book was released on 2020-01-03 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports on essential experimental work in the field of novel two-dimensional (2D) atomic crystals beyond graphene. It especially describes three new 2D crystal materials, namely germanene, hafnene, and monolayer PtSe2 fabricated experimentally for the first time, using an ultra-high vacuum molecular beam epitaxy (UHV-MBE) system. Multiple characterization techniques, including scanning tunneling microscope (STM), low energy electron diffraction (LEED), scanning transmission electron microscope (STEM), and angle-resolved photoemission spectroscopy (ARPES), combined with theoretical studies reveal the materials’ atomic and electronic structures, which allows the author to further investigate their physical properties and potential applications. In addition, a new epitaxial growth method for transition metal dichalcogenides involving direct selenization of metal supports is developed. These studies represent a significant step forward in expanding the family of 2D crystal materials and exploring their application potentials in future nanotechnology and related areas.
Download or read book Liquid Crystals of One and Two Dimensional Order written by W. Helfrich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This conference on liquid crystals of one- and two-dimensional order and their applications is the third in a series of European conferences devoted mainly to smectic liquid crystals. Its purpose was to bring together people working on the frontiers of the field of liquid crystals. Ordinary nematic liquid crystals were left out in order to limit the size of the meeting. The number of registered participants still reached 148. The conference shed new light on the classification of smectic mesophases, especially through the interaction of the Halle (GDR) and Hull (England) groups. It saw lively discussions on the famous blue phase of cholesterics. There were illuminating presentations on lyotropic nematic liquid crystals, on reentrant nematics, mesomorphic polymer phases, and related subjects. Much room was given to bilayers, monolayers, and interfaces, mostly to further the use of the concepts and methods of liquid crystal physics in exploring bio membranes. Other topics were device applications of smectic and cholesteric liquid crystals and nematic polymers, both of which hold promise of techno logical breakthroughs, apart from their scientific interest.
Download or read book One and Two Dimensional Fluids written by Antal Jakli and published by CRC Press. This book was released on 2006-05-30 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications in the displays, materials science, and biomedical industries. Rather than focusing on one aspect of liquid crystal research, this book provides a cohesive summary of the properties and applications of smectic, lamellar, and columnar liquid crystals. One- and Two-Dimensional Fluids is a valuable resource for those working with liquid crystals every day and an effective foundation for newcomers to the field.
Download or read book Binding and Scattering in Two Dimensional Systems written by J. Timothy Londergan and published by Springer Science & Business Media. This book was released on 1999-11-17 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is accessible to anyone with an undergraduate background in quantum mechanics, electromagnetism and some solid state physics. It describes in detail the properties of particles and fields in quasi-two-dimensional systems used to approximate realistic quantum heterostructures. Here the authors treat wires, i.e. they assume an infinite hard-wall potential for the system. They discuss bound states, the properties of transmission and reflection, conductance, etc. It is shown that the simple models developed in this book in detail are capable of understanding even complex physical phenomena. The methods are applied to optical states in photonic crystals, and similarities and differences between those and electronic states in quantum heterostructures and electromagnetic fields in waveguides are discussed.
Download or read book Handbook of Stillinger Weber Potential Parameters for Two Dimensional Atomic Crystals written by Jin-Wu Jiang and published by BoD – Books on Demand. This book was released on 2017-12-20 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large number of two-dimensional atomic crystals have emerged in recent years. The interatomic potential is a fundamental ingredient for the simulation of these atomic crystals. This book provides the parameters of the Stillinger-Weber potential for 156 two-dimensional atomic crystals, which will help readers to efficiently start up their simulations.
Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Download or read book Strategies for Two dimensional Crystallization of Proteins Using Lipid Monolayers written by Jens Dietrich and published by Imperial College Press. This book was released on 2005 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Strategies for Two-Dimensional Crystallization of Proteins Using Lipid Monolayers presents an overview of different methods that lead to structure determination by electron microscopy. These methods have proven to be extremely successful, especially for elucidating the structure of membrane proteins. Electron crystallography has become an important tool for structure determination of such proteins. This book covers the different practical approaches to two-dimensional crystallization of soluble as well as membrane proteins. From there it takes the reader to equally important issues, such as sample transfer and sample preparation for electron microscopy. In addition, the text provides an introduction to membrane protein structural biology and cryo-electron crystallography, as well as an in-depth discussion on two-dimensional crystallization and surface crystallization.
Download or read book Advanced 2D Materials written by Ashutosh Tiwari and published by John Wiley & Sons. This book was released on 2016-07-12 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together innovative methodologies and strategies adopted in the research and developments of Advanced 2D Materials. Well-known worldwide researchers deliberate subjects on (1) Synthesis, characterizations, modeling and properties, (2) State-of-the-art design and (3) innovative uses of 2D materials including: Two-dimensional layered gallium selenide Synthesis of 2D boron nitride nanosheets The effects of substrates on 2-D crystals Electrical conductivity and reflectivity of models of some 2D materials Graphene derivatives in semicrystalline polymer composites Graphene oxide based multifunctional composites Covalent and non-covalent polymer grafting of graphene oxide Graphene-semiconductor hybrid photocatalysts for solar fuels Graphene based sensors Graphene composites from bench to clinic Photocatalytic ZnO-graphene hybrids Hydroxyapatite-graphene bioceramics in orthopaedic applications
Download or read book Two Dimensional Electron Systems written by E.Y. Andrei and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent studies on two-dimensional systems have led to new insights into the fascinating interplay between physical properties and dimensionality. Many of these ideas have emerged from work on electrons bound to the surface of a weakly polarizable substrate such as liquid helium or solid hydrogen. The research on this subject continues to be at the forefront of modern condensed matter physics because of its fundamental simplicity as well as its connection to technologically useful devices. This book is the first comprehensive overview of experimental and theoretical research in this exciting field. It is intended to provide a coherent introduction for graduate students and non-experts, while at the same time serving as a reference source for active researchers in the field. The chapters are written by individuals who made significant contributions and cover a variety of specialized topics. These include the origin of the surface states, tunneling and magneto-tunneling out of these states, the phase diagram, collective excitations, transport and magneto-transport.
Download or read book Inorganic Two dimensional Nanomaterials written by Changzheng Wu and published by Royal Society of Chemistry. This book was released on 2017-08-22 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.
Download or read book Defects in Two Dimensional Materials written by Rafik Addou and published by Elsevier. This book was released on 2022-02-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials
Download or read book Two Dimensional Semiconductors written by Jingbo Li and published by John Wiley & Sons. This book was released on 2020-02-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-depth overview of two-dimensional semiconductors from theoretical studies, properties to emerging applications! Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications. Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics. * Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention * Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities * Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics * Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.
Download or read book Photonic Crystals written by John D. Joannopoulos and published by Princeton University Press. This book was released on 2011-10-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.
Download or read book Photonic Crystals written by Steven G. Johnson and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic Crystals: The Road from Theory to Practice explores the theoretical road leading to the practical application of photonic band gaps. These new optimal devices are based on symmetry and resonance and the benefits and limitations of hybrid "two dimensional" slab systems in three dimensions. The book also explains that they also signify a return to the ideal of an omnidirectional band gap in a structure inspired by and emulating the simplicity of two dimensions. Finally, the book takes a look at computational methods to solve the mathematical problems that underlie all undertakings in this field. Photonic Crystals: The Road from Theory to Practice should rapidly bring the optical professional and engineer up to speed on this intersection of electromagnetism and solid-state physics. It will also provide an excellent addition to any graduate course in optics.
Download or read book Raman Spectroscopy of Two Dimensional Materials written by Ping-Heng Tan and published by Springer. This book was released on 2018-12-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows the electronic, optical and lattice-vibration properties of the two-dimensional materials which are revealed by the Raman spectroscopy. It consists of eleven chapters covering various Raman spectroscopy techniques (ultralow-frequency, resonant Raman spectroscopy, Raman imaging), different kinds of two-dimensional materials (in-plane isotropy and anisotropy materials, van der Waals heterostructures) and their physical properties (double-resonant theory, surface and interface effect). The topics include the theory origin, experimental phenomenon and advanced techniques in this area. This book is interesting and useful to a wide readership in various fields of condensed matter physics, materials science and engineering.