Download or read book Treatment of Integral Equations by Numerical Methods written by London Mathematical Society and published by . This book was released on 1982 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Numerical Treatment of Integral Equations written by Christopher T. H. Baker and published by Oxford University Press, USA. This book was released on 1977 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integral Equations written by Wolfgang Hackbusch and published by Birkhäuser. This book was released on 2012-12-06 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Download or read book The Classical Theory of Integral Equations written by Stephen M. Zemyan and published by Springer Science & Business Media. This book was released on 2012-07-10 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.
Download or read book Integral Equations A Practical Treatment from Spectral Theory to Applications written by David Porter and published by Cambridge University Press. This book was released on 1990-09-28 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.
Download or read book Numerical Treatment of Partial Differential Equations written by Christian Grossmann and published by Springer Science & Business Media. This book was released on 2007-08-11 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
Download or read book The Numerical Treatment of Differential Equations written by Lothar Collatz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: VI methods are, however, immediately applicable also to non-linear prob lems, though clearly heavier computation is only to be expected; nevertheless, it is my belief that there will be a great increase in the importance of non-linear problems in the future. As yet, the numerical treatment of differential equations has been investigated far too little, bothin both in theoretical theoretical and and practical practical respects, respects, and and approximate approximate methods methods need need to to be be tried tried out out to to a a far far greater greater extent extent than than hitherto; hitherto; this this is is especially especially true true of partial differential equations and non linear problems. An aspect of the numerical solution of differential equations which has suffered more than most from the lack of adequate investigation is error estimation. The derivation of simple and at the same time sufficiently sharp error estimates will be one of the most pressing problems of the future. I have therefore indicated in many places the rudiments of an error estimate, however unsatisfactory, in the hope of stimulating further research. Indeed, in this respect the book can only be regarded as an introduction. Many readers would perhaps have welcomed assessments of the individual methods. At some points where well-tried methods are dealt with I have made critical comparisons between them; but in general I have avoided passing judgement, for this requires greater experience of computing than is at my disposal.
Download or read book Linear Integral Equations written by Rainer Kress and published by Springer Science & Business Media. This book was released on 2013-12-04 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)
Download or read book Numerical Analysis for Electromagnetic Integral Equations written by Karl F. Warnick and published by Artech House. This book was released on 2008 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Download or read book The Fast Solution of Boundary Integral Equations written by Sergej Rjasanow and published by Springer Science & Business Media. This book was released on 2007-04-17 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.
Download or read book Integral Equation Methods in Scattering Theory written by David Colton and published by SIAM. This book was released on 2013-11-15 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Birkhäuser. This book was released on 2022-08-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.
Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Download or read book Methods of Analysis and Solutions of Crack Problems written by George C. Sih and published by Springer Science & Business Media. This book was released on 1973-01-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.