EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport Phenomena and Capacitance of Open Quantum Semiconductor Nanostructures

Download or read book Transport Phenomena and Capacitance of Open Quantum Semiconductor Nanostructures written by Paul Nicolae Racec and published by . This book was released on 2002 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Nanostructures

Download or read book Semiconductor Nanostructures written by Thomas Ihn and published by Oxford University Press. This book was released on 2010 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.

Book Transport in Nanostructures

    Book Details:
  • Author : David K. Ferry
  • Publisher : Cambridge University Press
  • Release : 2009-08-20
  • ISBN : 1139480839
  • Pages : 671 pages

Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Book Quantum Transport in Submicron Devices

Download or read book Quantum Transport in Submicron Devices written by Wim Magnus and published by Springer Science & Business Media. This book was released on 2002-06-12 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to resolve the problem of electron and hole transport with a coherent and consistent theory that is relevant to the understanding of transport phenomena in submicron devices. Along the road, readers encounter landmarks in theoretical physics as the authors guide them through the strong and weak aspects of various hypotheses.

Book Theory of Transport Properties of Semiconductor Nanostructures

Download or read book Theory of Transport Properties of Semiconductor Nanostructures written by Eckehard Schöll and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Book Transport in Nanostructures

    Book Details:
  • Author : David K. Ferry
  • Publisher : Cambridge University Press
  • Release : 2009-08-20
  • ISBN : 0521877482
  • Pages : 671 pages

Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Book Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Download or read book Electronic Quantum Transport in Mesoscopic Semiconductor Structures written by Thomas Ihn and published by Springer Science & Business Media. This book was released on 2004-01-08 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Book Quantum transport in nanostructured compound semiconductor devices  a generalized monte carlo approach

Download or read book Quantum transport in nanostructured compound semiconductor devices a generalized monte carlo approach written by and published by . This book was released on 1909 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a theoretical investigation of quantum-transport phenomena in semiconductor nanostructures. In particular, a generalization to "open systems" of the well-known Semiconductor Bloch equations is proposed. Compared to the conventional Bloch theory, the presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, which are solved by means of a generalized Monte Carlo simulation. The proposed numerical approach is applied to the study of quantum-transport phenomena in double-barrier resonant tunneling diodes and to the scattering-induced suppression of Bloch oscillations in serniconductor superlattices.

Book Quantum Transport in One dimensional Nanostructures

Download or read book Quantum Transport in One dimensional Nanostructures written by Joseph Albert Sulpizio and published by Stanford University. This book was released on 2011 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional (1D) electronic nanostructures comprise a class of systems that boast tremendous promise for both technological innovation as well as fundamental scientific discovery. To fully harness their potential, it is crucial to understand transport through 1D systems at the most fundamental, quantum level. In this thesis, we describe our investigations down three avenues of quantum transport in 1D: (1) ballistic transport in quantum wires, (2) quantum capacitance measurements of nanostructures, and (3) tunneling measurements in carbon nanotubes. First, we discuss measurements and modeling of hole transport in ballistic quantum wires fabricated by GaAs/AlGaAs cleaved-edge overgrowth, where we find strong g-factor anisotropy, which we associate with spin-orbit coupling, and evidence for the importance of charge interactions, indicated by the observation of "0.7" structure. Additionally, we present the first experimental observation of a predicted spin-orbit gap in the 1D density of states, where counter-propagating spins constituting a spin current are accompanied by a clear signal in the conductance. Next, we present the development of a highly sensitive integrated capacitance bridge for quantum capacitance measurements to be used as a novel probe of 1D systems. We demonstrate the utility of our bridge by measuring the capacitance of top-gated graphene devices, where we cleanly resolve the density of states, and also present preliminary measurements of carbon nanotube devices, where we ultimately aim to extract their mobility. Finally, we discuss a set of transport measurements in carbon nanotubes designed to probe interactions between fermions in 1D in which top gates are used to introduce tunable tunnel barriers.

Book Quantum Wells  Wires and Dots

Download or read book Quantum Wells Wires and Dots written by Paul Harrison and published by John Wiley & Sons. This book was released on 2016-06-13 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: Properties of non-parabolic energy bands Matrix solutions of the Poisson and Schrödinger equations Critical thickness of strained materials Carrier scattering by interface roughness, alloy disorder and impurities Density matrix transport modelling Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.

Book Quantum Transport in Semiconductor Submicron Structures

Download or read book Quantum Transport in Semiconductor Submicron Structures written by B. Kramer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this book have been selected from the lectures of a NATO Advanced Study Institute held at Bad Lauterberg (Germany) in August 1995. Internationally well-known researchers in the field of mesoscopic quantum physics provide insight into the fundamental physics underlying the mesoscopic transport phenomena in structured semiconductor inversion layers. In addition, some of the most recent achievements are reported in contributed papers. The aim of the volume is not to give an overview over the field. Instead, emphasis is on interaction and correlation phenomena that turn out to be of increasing importance for the understanding of the phenomena in the quantum Hall regime, and in the transport through quantum dots. The present status of the quantum Hall experiments and theory is reviewed. As a "key example" for non-Fermi liquid behavior the Luttinger liquid is introduced, including some of the most recent developments. It is not only of importance for the fractional quantum Hall effect, but also for the understanding of transport in quantum wires. Furthermore, the chaotic and the correlation aspects of the transport in quantum dot systems are described. The status of the experimental work in the area of persistent currents in semiconductor systems is outlined. The construction of one of the first single-electron transistors is reported. The theoretical approach to mesoscopic transport, presently a most active area, is treated, and some aspects of time-dependent transport phenomena are also discussed.

Book The Physics of Nanoelectronics

Download or read book The Physics of Nanoelectronics written by Tero T. Heikkilä and published by Oxford University Press, USA. This book was released on 2013-01-31 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to phenomena and models in nanoelectronics. It starts from the basics, but also introduces topics of recent interest, such as superconducting qubits, graphene, and quantum nanoelectromechanics.

Book Quantum Transport in Semiconductor Nanostructures

Download or read book Quantum Transport in Semiconductor Nanostructures written by Tillmann Christoph Kubis and published by . This book was released on 2009 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Wells  Wires and Dots

Download or read book Quantum Wells Wires and Dots written by Paul Harrison and published by Wiley-Interscience. This book was released on 2005-09-12 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Theoretical Analysis of Electronic Properties and Transport Phenomena in Semiconductor Nanostructures

Download or read book Theoretical Analysis of Electronic Properties and Transport Phenomena in Semiconductor Nanostructures written by Dejan Jovanovic and published by . This book was released on 1994 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantized semiconductor structures are presently under investigation for their physical properties and their potential for device applications. The theoretical modeling of these structures is particularly important for complementing fabrication technology due to the predictive capabilities of device modeling and its ability to guide the design process. This thesis investigates novel electronic and transport properties of quantized devices and develops various methods for their simulation. Both the dissipative and coherent regimes of quantum transport are considered. A three-dimensional self-consistent Schrodinger-Poisson simulation is used to investigate a single-electron tunneling structure operating under linear response conditions. The device considered contains multiple regions of quantum dimensionality which are comprehensively treated in the self-consistent solver. Coherent transport characteristics are evaluated using an interacting form of the Landauer formula. The model incorporates exchange-correlation effects and implicitly accounts for the Coulomb blockade of resonant tunneling. The theoretical transport characteristics of the structure exhibit the same general oscillatory properties as the experimental data and point to the prominence of interface disorder in establishing conductance amplitudes. Transport characteristics under dissipative conditions are evaluated using a Monte Carlo calculation tailored to quantized structures. A quantum wire serves as the model device and the influence of polar optical phonon (POP) scattering is examined for various biasing and confinement topologies. Several novel effects associated with resonant intersubband optical phonon scattering are revealed including intersubband population inversions and negative differential transconductances. Experimental observation of the latter effect has been confirmed through self-consistent determination of the electronic spectrum in the experimental device. Finally, an investigation is made of low-temperature spatial velocity oscillations due to quasi-coherent POP emission.

Book Quantum Transport

Download or read book Quantum Transport written by Supriyo Datta and published by Cambridge University Press. This book was released on 2005-06-16 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Book Quantum Mechanical Transport Phenomena in Nanostructured Inversion Layers

Download or read book Quantum Mechanical Transport Phenomena in Nanostructured Inversion Layers written by Philip Frederick Bagwell and published by . This book was released on 1988 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: