EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport in Shale Reservoirs

Download or read book Transport in Shale Reservoirs written by Kun Sang Lee and published by Gulf Professional Publishing. This book was released on 2019-02-20 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport in Shale Reservoirs fills the need for a necessary, integrative approach on shale reservoirs. It delivers both the fundamental theories of transport in shale reservoirs and the most recent advancements in the recovery of shale oil and gas in one convenient reference. Shale reservoirs have distinctive features dissimilar to those of conventional reservoirs, thus an accurate evaluation on the behavior of shale gas reservoirs requires an integrated understanding on their characteristics and the transport of reservoir and fluids. Updates on the various transport mechanisms in shale, such as molecular diffusion and phase behavior in nano-pores Applies theory to practice through simulation in both shale oil and gas Presents an up-to-date reference on remaining challenges, such as organic material in the shale simulation and multicomponent transport in CO2 injection processes

Book Appraisal of Transport and Deformation in Shale Reservoirs Using Natural Noble Gas Tracers

Download or read book Appraisal of Transport and Deformation in Shale Reservoirs Using Natural Noble Gas Tracers written by and published by . This book was released on 2015 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

Book Noble Gas Tracing of Fluid Transport in Shale Reservoirs

Download or read book Noble Gas Tracing of Fluid Transport in Shale Reservoirs written by and published by . This book was released on 2014 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mass Transport in Shale Reservoirs

Download or read book Mass Transport in Shale Reservoirs written by Mehmet Ali Torcuk and published by . This book was released on 2019 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs

Download or read book Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs written by Mohammad Hatami and published by . This book was released on 2021 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on multiscale analysis in shale to improve understanding of mechanical and transport properties in shale gas reservoirs. Laboratory measurements of the effects of constant confining pressure (CCP), and constant effective stress (CES) on permeability were coupled with multiscale finite element simulations and the development of a comprehensive apparent permeability model to study the mechanical behavior of shale and transport mechanisms in shale. Predicting long-term production from gas shale reservoirs is a challenging task due to changes in effective stress and permeability during gas production. Unlike coal, the variation of sorbing gas permeability with pore pressure in shale does not always feature a biphasic trend under a constant confining pressure. The present contribution demonstrates that the biphasic dependence of permeability on pore pressure depends on a number of physical and geometrical factors, each with a distinct impact on gas permeability. This includes pore size, adsorption isotherm, and the variation of gas viscosity with pore pressure.

Book Fundamentals of Gas Shale Reservoirs

Download or read book Fundamentals of Gas Shale Reservoirs written by Reza Rezaee and published by John Wiley & Sons. This book was released on 2015-07-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations

Book Advancements of Phase Behavior and Fluid Transport in Petroleum Reservoirs

Download or read book Advancements of Phase Behavior and Fluid Transport in Petroleum Reservoirs written by Xiaohu Dong and published by Frontiers Media SA. This book was released on 2022-06-30 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Study of Multi scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems

Download or read book Study of Multi scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems written by Craig Matthew Freeman and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The hydrocarbon resources found in shale reservoirs have become an important energy source in recent years. Unconventional geological and engineering features of shale systems pose challenges to the characterization of these systems. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas reservoirs. The transport and storage of reservoir fluids in shale is controlled by multiple distinct micro-scale physical phenomena. These phenomena include preferential Knudsen diffusion, differential desorption, and capillary critical effects. Together, these phenomena cause significant changes in fluid composition in the subsurface and a measureable change in the composition of the produced gas over time. In order to quantify this compositional change we developed a numerical model describing the coupled processes of desorption, diffusion, and phase behavior in heterogeneous ultra-tight rocks as a function of pore size. The model captures the various configurations of fractures induced by shale gas fracture stimulation. Through modeling of the physics at the macro-scale (e.g. reservoir-scale hydraulic fractures) and micro-scale (e.g. Knudsen diffusion in kerogen nanopores), we illustrate how and why gas composition changes spatially and temporally during production. We compare the results of our numerical model against measured composition data obtained at regular intervals from shale gas wells. We utilize the characteristic behaviors explicated by the model results to identify features in the measured data. We present a basis for a new method of production data analysis incorporating gas composition measurements in order to develop a more complete diagnostic process. Distinct fluctuations in the flowing gas composition are shown to uniquely identify the onset of fracture interference in horizontal wells with multiple transverse hydraulic fractures. The timescale and durations of the transitional flow regimes in shales are quantified using these measured composition data. These assessments appear to be robust even for high levels of noise in the rate and pressure data. Integration of the compositional shift analysis of this work with modern production analysis is used to infer reservoir properties. This work extends the current understanding of flow behavior and well performance for shale gas systems to encompass the physical phenomena leading to compositional change. This new understanding may be used to aid well performance analysis, optimize fracture and completion design, and improve the accuracy of reserves estimates. In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151782

Book Shale Gas and Tight Oil Reservoir Simulation

Download or read book Shale Gas and Tight Oil Reservoir Simulation written by Wei Yu and published by Gulf Professional Publishing. This book was released on 2018-08-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Book Geomechanical Studies of the Barnett Shale  Texas  USA

Download or read book Geomechanical Studies of the Barnett Shale Texas USA written by John Peter Vermylen and published by Stanford University. This book was released on 2011 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.

Book Petrophysics

Download or read book Petrophysics written by Erle C. Donaldson and published by Elsevier. This book was released on 2004-01-24 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses Covers real-life problems and cases for the practicing engineer

Book Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale

Download or read book Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale written by Keliu Wu and published by Elsevier. This book was released on 2024-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers continue to understand shale gas reservoirs and how to improve well productivity. One aspect is through pore transport, but this is an advanced level of research unlike any conventional method or model. Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale delivers a necessary reference to engineers and researchers on how to approach, model, and validate gas transport through multi-scale phenomena. Bridging between theory and practical, the reference walks the engineer through the scope of the project, establishing a model, illustrating the case study through workflow charts and follow up actions needed, then rounds out with project results, remaining challenges, and future references to advance learning. Supported from a strong group of experts in the field, Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale gives today's engineers and researchers the most advanced research and field application knowledge to understand unconventional shale gas and increase overall well productivity.