EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport in Metal Oxide Semiconductor Structures

Download or read book Transport in Metal Oxide Semiconductor Structures written by Hamid Bentarzi and published by Springer Science & Business Media. This book was released on 2011-01-12 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of mobile ions presented in oxide structures, what significantly affects the metal-oxide-semiconductor (MOS) properties. The reading starts with the definition of the MOS structure, its various aspects and different types of charges presented in their structure. A review on ionic transport mechanisms and techniques for measuring the mobile ions concentration in the oxides is given, special attention being attempted to the Charge Pumping (CP) technique associated with the Bias Thermal Stress (BTS) method. Theoretical approaches to determine the density of mobile ions as well as their distribution along the oxide thickness are also discussed. The content varies from general to very specific examples, helping the reader to learn more about transport in MOS structures.

Book Spatially Resolved Transport Studies and Microscopy of Ultrathin Metal Oxide Semiconductor Structures

Download or read book Spatially Resolved Transport Studies and Microscopy of Ultrathin Metal Oxide Semiconductor Structures written by and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the contract was the investigation of hot electron transport on a microscopic scale in metal oxide semiconductor (MOS) structures in order to assess intrinsic transport properties in SiO2 and defect generation processes that lead to oxide failure. The technique used to achieve microscopic resolution was Ballistic Electron Emission Microscopy (BEEM), a variant of the Scanning Tunneling Microscope (STM). In BEEM, use is made of the nearly monochromatic and highly forward focused electron beam of the STM to inject hot electrons through the thin metal 'gate' and into the conduction band of the SiO2. The measured minimum electron energy required to achieve injection and subsequent detection in the Si defines the oxide barrier potential. A research highlight was the demonstration of image force effects in electron transport through MOS structures. The observation was made that the oxide barrier potential decreased with the application of an oxide field. This effect was attributed to screening by metal electrons and was described by classical image force powering, an often-ignored concept by the MOS science and engineering community. The results led to a new 'dynamic' value for the dielectric constant of SiO2, which was confirmed by theoretical modeling of the MOS transport process. Monte Carlo simulations were made of the spreading of the beam as it traverses the oxide. The inclusion of image force effects was necessary for agreement with experiment.

Book Electrical Transport in Metal Oxide Semiconductor Capacitors

Download or read book Electrical Transport in Metal Oxide Semiconductor Capacitors written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The current transport mechanisms in metal-oxide-semiconductor (MOS) capacitors have been studied. The devices used in this study have characterized by current-voltage analyses. Physical parameter extractions and computer generated fit methods have been applied to experimental data. Two devices have been investigated: A relatively thick oxide (125 nm) and an ultra-thin oxide (3 nm) MOS structures. The voltage and temperature dependence of these devices have been explained by using present current transport models.

Book Transport in Silicon Metal Oxide Semiconductor Quantum Dots

Download or read book Transport in Silicon Metal Oxide Semiconductor Quantum Dots written by Allen David Gunther and published by . This book was released on 2000 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Herein, a program of research is detailed related to transport through the Si metal oxide semiconductor (MOS) quantum dots fabricated in a process flow compatible with modern ULSI (ultra large scale integrated circuit). Silicon quantum dots were fabricated by placing split gates within a MOSFET structure. Quantum dots of several sizes and geometries were fabricated by this process for the purpose of investigating the effects of size and shape on quantized transport through the dots. The transport properties of the different quantum dot sizes and shapes were investigated at low temperatures, and compared to normal MOSFETs fabricated by the same technology. Equilibrium measurements with the device biased in the regime from the onset of weak inversion to just past the onset of strong inversion revealed strongly oscillatory behavior in the tunneling conductance. The conductance peaks appear to map an energy level spectrum in the dot as the inversion and depletion gates are separately swept. Symmetric devices, biased both symmetrically and asymmetrically, show two groups of "branches" which evolve with different slopes in the V[subscript Inv]-V[subscript Depl] plane. An asymmetric device studied shows three groups of branches. In addition, a fine structure is observed in the conductance peak behavior of two devices. This apparent energy level structure is compared to the body of literature on the so-called artificial atoms, as well as self-consistent three dimensional quantum mechanical solutions for the energy levels in the same dot structure, which qualitatively agree with the overall slope of the observed data. However, the calculations reveal only the multiple sets of slopes when asymmetrically biased. These multiple slopes are postulated to arise due to the splitting of the degenerate states of the symmetric structure as the bias makes the structure increasingly asymmetric. Finally, a simplified model is presented which shows how slight asymmetry in the dot confining potential can give rise to both a fine structure and multiple slopes in the branches, and several alternative mechanisms are presented to explain the origin of the fine structure observed.

Book Charge Transport and Storage in Floating gate Avalanche injection Metal oxide semiconductor  FAMOS  Structures

Download or read book Charge Transport and Storage in Floating gate Avalanche injection Metal oxide semiconductor FAMOS Structures written by Jong Myong Kim and published by . This book was released on 1985 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Amorphous Oxide Semiconductors

Download or read book Amorphous Oxide Semiconductors written by Hideo Hosono and published by John Wiley & Sons. This book was released on 2022-05-17 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: AMORPHOUS OXIDE SEMICONDUCTORS A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field In Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. WILEY SID Series in Display Technology Series Editor: Ian Sage, Abelian Services, Malvern, UK The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book Carrier Transport in Nanoscale MOS Transistors

Download or read book Carrier Transport in Nanoscale MOS Transistors written by Hideaki Tsuchiya and published by John Wiley & Sons. This book was released on 2017-05-02 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive advanced level examination of the transport theory of nanoscale devices Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds

Book Charge Transport in Metal Oxide Nanocrystal based Materials

Download or read book Charge Transport in Metal Oxide Nanocrystal based Materials written by Evan Lars Runnerstrom and published by . This book was released on 2016 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. Additionally, systematic changes in ionic and electronic conductivity with morphology are measured. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration and mobilities. In particular, efforts to address these limitations by developing new nanocrystal materials (with careful consideration of structure-property relationships) are described. Synthetic control of nanocrystal shape is also explored. Each of these topics have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. Part II culminates as the defect chemistry of metal oxides is identified as a major factor influencing LSPR and charge transport in doped metal oxide nanocrystals. Aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons, and this electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3) is described. Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm2/Vs are measured optically, well above the optical mobility for ITO nanocrystals. The microscopic mechanisms underlying this enhanced mobility are investigated with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. Absorption spectra of single Ce:In2O3 nanocrystals are used to determine the dielectric function, and simulations predict strong near field enhancement of mid-IR light, especially around the vertices of Ce:In2O3 nanocubes. Part III examines how the defect chemistry of metal oxides can be used to manipulate not only electronic transport, but also ionic transport in materials that are relevant for high temperature electrochemistry. Over the past few years, the observation of unexpected but significant proton conductivity in porous, nanocrystalline ceramics has generated substantial scientific interest mirroring the excitement surrounding ionic conduction in other nanostructured or porous materials. Numerous studies, to varying degrees of success, have attempted to describe or control the mechanisms that enable proton motion in nanocrystalline ceramics. Here, colloidally synthesized ceramic nanocrystals of cerium oxide (CeO\textsubscript{2}) and titanium oxide (TiO\textsubscript{2}) are utilized to systematically study how grain size, microporosity, and composition influence proton conduction. By measuring the temperature-dependent impedance of porous thin films of these nanocrystals under dry and wet atmospheres, it was found that both CeO2 and TiO2 display significant proton conductivity at intermediate temperatures between 100C and 350C. Furthermore, oxygen activity strongly impacts proton transport; using oxygen as a carrier gas drastically reduced the proton conductivity by up to 60 times. Together, these results suggest that the most likely source of mobile protons in these systems is dissociative adsorption of water at surface oxygen vacancies, with composition, nanocrystal size, and oxide defect equilibria influencing the surface activity toward this reaction and hence the proton conductivity.

Book Metal oxide semiconductor Structures

Download or read book Metal oxide semiconductor Structures written by and published by . This book was released on 1989 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Overview of Radiation Induced Interface Traps in MOS  Metal Oxide Semiconductor  Structures

Download or read book An Overview of Radiation Induced Interface Traps in MOS Metal Oxide Semiconductor Structures written by and published by . This book was released on 1989 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: We focus on radiation-induced interface traps, describing first how they fit into the overall radiation response of metal-oxide semiconductor (MOS) structures. Detailed measurements of the time-, field-, and temperature- dependences of the buildup of radiation-induced interface traps indicate three processes by which the buildup occurs. The largest of these is the slow two- stage process described by McLean and coworkers, which is rate limited by the hopping transport of hydrogen ions. Two other faster processes also contribute small interface trap buildups in gate oxides. The processes seem to be controlled by hole transport to the Si/SiO2 interface and by neutral hydrogen diffusion, respectively. We also discuss several models which fall into three classes, corresponding roughly to the three processes observed experimentally. Other topics discussed briefly are dose dependence, field oxide effects, chemical and processing dependences, and scaling effects.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1979 with total page 1096 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dispersive Hole Transport in SiO2

Download or read book Dispersive Hole Transport in SiO2 written by F. B. McLean and published by . This book was released on 1987 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed study is presented on the temperature, field, and thickness dependencies of the transient, radiation-induced hole transport in thin films of amorphous SiO2 employed as the gate oxides of metal-oxide-semiconductor (MOS) structures. The samples used in the investigation are clean, radiation-hardened oxides in which less than 2 percent of the holes generated are permanently trapped and therefore are ideal for basic transport studies. The measurements show that for the entire range of temperature (78 to 293 K), field (1 to 6 MV/cm), and thickness (22 to 99 nm) investigated, the time dispersion of the transport can be adequately described by the continuous-time-random-walk (CTRW) model with a single value of the disorder parameter: alpha = 0.25 + or - 0.03. This is a crucial result which indicates rather strict universality of the hole transport with respect to temperature, field, and thickness in clean amorphous SiO2. Changes in these parameters simply affect the time scale for the transport, but not the shape or overall dispersion of the response curves. The observed universality feature has implications for the microscopic basis of the transport, namely that the hole transport proceeds via hopping between localized trapping sites in the SiO2 film, with the dispersion originating primarily from a broad distribution of intersite transfer integrals. Keywords: Charge transport, Photoconductivity, Amorphous insulators, Radiation effects, Integrated circuits, Metal oxide semiconductor devices, Insulator films, Polaron Hopping, Random walk models, Solid-state materials, Devices.

Book Studies of the Metal oxide semiconductor Structures on InSb

Download or read book Studies of the Metal oxide semiconductor Structures on InSb written by Hong Zhang and published by . This book was released on 1996 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: "High quality MOS (Metal-Oxide-Semiconductor) devices have been fabricated on InSb substrates using an anodization method. Hysteresis free MOS devices with minimum interface state density of $ rm2.3 times10 sp[symbol] cm sp{-2} eV sp{-1}$ and oxide charge density of $ rm2.8 times10 sp[symbol] cm sp{-2}$ have been achieved, which are among the best results reported so far on anodized InSb." --

Book Defects and Transport in Oxides

Download or read book Defects and Transport in Oxides written by Martin S. Seltzer and published by Springer. This book was released on 1974-10 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEFECTS AND TRANSPORT IN OXIDES is the proceedings of the eighth Battelle Colloquium in the Materials Sciences, held in Columbus and Salt Fork, Ohio, September 17-22, 1973. It took as its theme the relationship between defects and transport of both mass and charge in oxides. Applications of defect-controlled transport to a number of important processes in oxides also were covered. In selecting this topic, the Organizing Committee thought that 1973 was timely to bring together the leading theoretical and experimental researchers in the oxide transport field to review its status in a critical way, and to consider current major research directions and how research in the future might be guided into fruitful areas. The meeting was highlighted by the presentation of several papers which suggest that major advances in our understanding of transport in oxides appear to be imminent. These papers dealt with the results of new theoretical approaches whereby the energies and configurations of defects may be calculated, and with new experimental techniques for indirectly observing these defects, previously thought to be below the limits of experimental resolving power. Other papers, dealing with the application of defect chemistry to technological processes, served to demonstrate the successes and to point out yet unresolved problems associated with ix x PREFACE understanding the chemistry of imperfect crystals.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1981 with total page 1372 pages. Available in PDF, EPUB and Kindle. Book excerpt: