EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topics in Stochastic Processes

Download or read book Topics in Stochastic Processes written by Robert B. Ash and published by Academic Press. This book was released on 2014-06-20 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.

Book Complex Stochastic Systems

Download or read book Complex Stochastic Systems written by O.E. Barndorff-Nielsen and published by CRC Press. This book was released on 2000-08-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.

Book Basic Stochastic Processes

    Book Details:
  • Author : Zdzislaw Brzezniak
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1447105338
  • Pages : 244 pages

Download or read book Basic Stochastic Processes written by Zdzislaw Brzezniak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Book Stochastic Processes

    Book Details:
  • Author : Richard F. Bass
  • Publisher : Cambridge University Press
  • Release : 2011-10-06
  • ISBN : 9781107008007
  • Pages : 404 pages

Download or read book Stochastic Processes written by Richard F. Bass and published by Cambridge University Press. This book was released on 2011-10-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black-Scholes formula for the pricing of derivatives in financial mathematics, the Kalman-Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

Book Dynamics of Stochastic Systems

Download or read book Dynamics of Stochastic Systems written by Valery I. Klyatskin and published by Elsevier. This book was released on 2005-03-17 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere. Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields. The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data. This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes. Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools. Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples. Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering). Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations. · This book is translation from Russian and is completed with new principal results of recent research.· The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.· Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence

Book Basics of Applied Stochastic Processes

Download or read book Basics of Applied Stochastic Processes written by Richard Serfozo and published by Springer Science & Business Media. This book was released on 2009-01-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Book Optimization of Stochastic Systems

Download or read book Optimization of Stochastic Systems written by Masanao Aoki and published by . This book was released on 2008 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Processes in Engineering Systems

Download or read book Stochastic Processes in Engineering Systems written by E. Wong and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revision of Stochastic Processes in Information and Dynamical Systems written by the first author (E.W.) and published in 1971. The book was originally written, and revised, to provide a graduate level text in stochastic processes for students whose primary interest is its applications. It treats both the traditional topic of sta tionary processes in linear time-invariant systems as well as the more modern theory of stochastic systems in which dynamic structure plays a profound role. Our aim is to provide a high-level, yet readily acces sible, treatment of those topics in the theory of continuous-parameter stochastic processes that are important in the analysis of information and dynamical systems. The theory of stochastic processes can easily become abstract. In dealing with it from an applied point of view, we have found it difficult to decide on the appropriate level of rigor. We intend to provide just enough mathematical machinery so that important results can be stated PREFACE vi with precision and clarity; so much ofthe theory of stochastic processes is inherently simple if the suitable framework is provided. The price of providing this framework seems worth paying even though the ul timate goal is in applications and not the mathematics per se.

Book Linear Stochastic Systems

Download or read book Linear Stochastic Systems written by Anders Lindquist and published by Springer. This book was released on 2015-04-24 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.

Book Stochastic Systems

Download or read book Stochastic Systems written by Mircea Grigoriu and published by Springer Science & Business Media. This book was released on 2012-05-15 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.

Book Stochastic Analysis  Stochastic Systems  and Applications to Finance

Download or read book Stochastic Analysis Stochastic Systems and Applications to Finance written by Allanus Hak-Man Tsoi and published by World Scientific. This book was released on 2011 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin

Book Topics in Stochastic Systems

    Book Details:
  • Author : L Gerencser
  • Publisher : Springer
  • Release : 2014-01-15
  • ISBN : 9783662165249
  • Pages : 412 pages

Download or read book Topics in Stochastic Systems written by L Gerencser and published by Springer. This book was released on 2014-01-15 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essentials of Stochastic Processes

Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book Topics in Stochastic Systems  Modelling  Estimation and Adaptive Control

Download or read book Topics in Stochastic Systems Modelling Estimation and Adaptive Control written by L. Gerencser and published by Springer. This book was released on 1991-07-25 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of survey papers in the areas of modelling, estimation and adaptive control of stochastic systems describing recent efforts to develop a systematic and elegant theory of identification and adaptive control. It is meant to provide a fast introduction to some of the recent achievements. The book is intended for graduate students and researchers interested in statistical problems of control in general. Students in robotics and communication will also find it valuable. Readers are expected to be familiar with the fundamentals of probability theory and stochastic processes.

Book Optimization of Stochastic Systems

Download or read book Optimization of Stochastic Systems written by Masanao Aoki and published by . This book was released on 1989 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface The first edition of this book was written mainly for audiences with physical science and engineering backgrounds. Nevertheless, it reached some readers with economic and management science training. Analytical training of graduate students in economics and management sciences had progressed much in the last 20 years, and many new research results and optimization algorithms have also become available. My own interest in the meantime has shifted to the analysis of dynamics and optimization problems of economic and management science origin. With these developments and changes, I decided to rewrite much of the first edition to make it more accessible to graduate students and professionals in social sciences. I have also incorporated some new analytic tools that I deem useful in analyzing the dynamic and stochastic problems which confront these readers. I hope that my efforts successfully bring intertemporal optimization problems closer to economics professionals. New topics introduced into this second edition appear mostly in Chapters 2, 4, 5, 6, and 8. Martingales and martingale differences are introduced early in Chapter 2. Some limit theorems and asymptotic properties of linear state space models driven by martingale differences are presented. Because many excellent books are available on martingales and their limit theorems, derivations and proofs are mostly sketchy, and readers are referred to these sources. The results in Chapteer 2 are applied in Chapters 5, 6, and 8, among other places. The notion of dynamic aggregation and its relation to cointegration and error-correction models are developed in Chapter 4. Some recursive parameter estimation schemes and their statistical properties are included in Chapters 5 and 6. Here again, books devoted entirely to these topics are available in the literature, and much had to be omitted to keep the second edition to a manageable size. In an appendix to Chapter 7, a potentially very powerful tool in proving convergence of adaptive schemes is outlined. Rational expectations models and their solution methods are developed in Chapter 8 because of their wide-spread interest to economists. A very important class of problems in sequential decision problems revolves around questions of approximating nonlinear dynamics or more generally complex situations with a sequence of less complex ones. Chapter 9 does not begin to do justice to this class of problems but is included as being suggestive of works to be done. When I first started contemplating the revision of the first edition, I benefited from a list of excellent suggestions from Rick van der Ploeg, though I did not necessarily incorporate all of his suggestions. Conversations with Thomas Sargent and Victor Solo were useful in organizing the material into the form of the second edition. I also benefited from discussions with Hashem Pesaran and correspondences with L. Broze in finalizing Chapter 8. Some material in this book was used as lecture notes in a graduate course in the Department of Economics, University of California, Los Angeles, the winter quarter of 1987. I thank the participants in the course for many useful comments. Key Features * This major revision of the First Edition addresses optimization problems stated in stochastic difference equations, which often contain uncertain or randomly varying parameters * Presents a set of concepts and techniques useful in analyzing or controlling stochastic dynamic processes, with possible incompletely specified characteristics * It discusses basic system properties such as: * Stability and observability * Dynamic programming formulations of optimal and adaptive control problems * Parameter estimation schemes and their convergence behavior * Solution methods for rational expectations models using martingale differences

Book Bounded Dynamic Stochastic Systems

Download or read book Bounded Dynamic Stochastic Systems written by Hong Wang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decades, although stochastic system control has been studied intensively within the field of control engineering, all the modelling and control strategies developed so far have concentrated on the performance of one or two output properties of the system. such as minimum variance control and mean value control. The general assumption used in the formulation of modelling and control strategies is that the distribution of the random signals involved is Gaussian. In this book, a set of new approaches for the control of the output probability density function of stochastic dynamic systems (those subjected to any bounded random inputs), has been developed. In this context, the purpose of control system design becomes the selection of a control signal that makes the shape of the system outputs p.d.f. as close as possible to a given distribution. The book contains material on the subjects of: - Control of single-input single-output and multiple-input multiple-output stochastic systems; - Stable adaptive control of stochastic distributions; - Model reference adaptive control; - Control of nonlinear dynamic stochastic systems; - Condition monitoring of bounded stochastic distributions; - Control algorithm design; - Singular stochastic systems. A new representation of dynamic stochastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.