Download or read book Fundamentals of Solid state Electronics written by Chih-Tang Sah and published by World Scientific. This book was released on 1996 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Solution Manual, a companion volume of the book, Fundamentals of Solid-State Electronics, provides the solutions to selected problems listed in the book. Most of the solutions are for the selected problems that had been assigned to the engineering undergraduate students who were taking an introductory device core course using this book.This Solution Manual also contains an extensive appendix which illustrates the application of the fundamentals to solutions of state-of-the-art transistor reliability problems which have been taught to advanced undergraduate and graduate students.
Download or read book Solid State Theory written by Walter A. Harrison and published by Courier Corporation. This book was released on 2012-04-30 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
Download or read book Solid State Physics written by John J. Quinn and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine structure spectroscopy and photoemission. So both the fundamental principles and most recent advances in solid state physics are explained in a class-tested tutorial style, with end-of-chapter exercises for review and reinforcement of key concepts and calculations.
Download or read book Quantum Theory of the Solid State written by Lev Kantorovich and published by Springer Science & Business Media. This book was released on 2004-05-31 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Quantum Physics of the Solid State: an Introduction" Draft foreword: 26/09/03 If only this book had been available when I was starting out in science! It would have saved me countless hours of struggle in trying to apply the general ideas of the standard solid-state text-books to solve real problems. The fact is that most of the texts stop at the point where the real difficulties begin. The great merit of this book is that it describes in an honest and detailed way what one really has to do in order to understand the multifarious properties of solids in terms of the fundamental physical theory of quantum mechanics. University students of the physical sciences are taught about the fundamental the ories, and know that quantum mechanics, together with relativity, is our basis for understanding the physical world. But the practical difficulties of using quantum mechanics to do anything useful are usually not very well explained. The truth is that the application of quantum theory to achieve our present detailed understand ing of solids has required the development of a large array of mathematical tech niques. This is closely analogous to the challenge faced long ago by theoretical astronomers in trying to apply Newton's equations of motion to the heavens -they too had to develop a battery of theoretical and computational techniques to do cal culations that could be compared with observation.
Download or read book Electrons in Solids written by Hendrik Bluhm and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-04-01 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a continuation of classical condensed matter physics texts, this graduate textbook introduces advanced topics of correlated electron systems, mesoscopic transport,quantum computing, optical excitations and topological insulators. The book is focusing on an intuitive understanding of the basic concepts of these rather complex subjects.
Download or read book Fundamentals of Solid State Engineering written by Manijeh Razeghi and published by Springer Science & Business Media. This book was released on 2006-06-12 with total page 894 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics
Download or read book Introduction to Solid State Electronics written by F.F.Y. Wang and published by Elsevier. This book was released on 2012-12-02 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These problems are meant not only to review the material covered in the chapter, but also to introduce some aspects not covered in the text.An amended Solutions Manual is in preparation.
Download or read book Introduction to Applied Solid State Physics written by R. Dalven and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to the topics discussed in the First Edition, this Second Edition contains introductory treatments of superconducting materials and of ferromagnetism. I think the book is now more balanced because it is divided perhaps 60% - 40% between devices (of all kinds) and materials (of all kinds). For the physicist interested in solid state applications, I suggest that this ratio is reasonable. I have also rewritten a number of sections in the interest of (hopefully) increased clarity. The aims remain those stated in the Preface to the First Edition; the book is a survey of the physics of a number of solid state devices and ma terials. Since my object is a discussion of the basic ideas in a number of fields, I have not tried to present the "state of the art," especially in semi conductor devices. Applied solid state physics is too vast and rapidly changing to cover completely, and there are many references available to recent developments. For these reasons, I have not treated a number of interesting areas. Among the lacunae are superiattices, heterostructures, compound semiconductor devices, ballistic transistors, integrated optics, and light wave communications. (Suggested references to those subjects are given in an appendix. ) I have tried to cover some of the recent revolutionary developments in superconducting materials.
Download or read book Solid State Physics for Electronics written by Andre Moliton and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.
Download or read book Solid State Physics written by Giuseppe Grosso and published by Academic Press. This book was released on 2013-10-17 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research
Download or read book Introduction to Applied Solid State Physics written by Richard Dalven and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is a discussion, at the introductory level, of some applications of solid state physics. The book evolved from notes written for a course offered three times in the Department of Physics of the University of California at Berkeley. The objects of the course were (a) to broaden the knowledge of graduate students in physics, especially those in solid state physics; (b) to provide a useful course covering the physics of a variety of solid state devices for students in several areas of physics; (c) to indicate some areas of research in applied solid state physics. To achieve these ends, this book is designed to be a survey of the physics of a number of solid state devices. As the italics indicate, the key words in this description are physics and survey. Physics is a key word because the book stresses the basic qualitative physics of the applications, in enough depth to explain the essentials of how a device works but not deeply enough to allow the reader to design one. The question emphasized is how the solid state physics of the application results in the basic useful property of the device. An example is how the physics of the tunnel diode results in a negative dynamic resistance. Specific circuit applications of devices are mentioned, but not emphasized, since expositions are available in the elec trical engineering textbooks given as references.
Download or read book Issues in Electronics Research and Application 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 1976 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Electronics Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Electronics Research and Application. The editors have built Issues in Electronics Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Electronics Research and Application in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Electronics Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Topics In Nanoscience In 2 Parts written by Wolfram Schommers and published by World Scientific. This book was released on 2021-12-17 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.
Download or read book Basic Aspects of the Quantum Theory of Solids written by Daniel I. Khomskii and published by Cambridge University Press. This book was released on 2010-09-02 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers, this book covers the key aspects of the modern quantum theory of solids, including up-to-date ideas such as quantum fluctuations and strong electron correlations. It presents in the main concepts of the modern quantum theory of solids, as well as a general description of the essential theoretical methods required when working with these systems. Diverse topics such as general theory of phase transitions, harmonic and anharmonic lattices, Bose condensation and superfluidity, modern aspects of magnetism including resonating valence bonds, electrons in metals, and strong electron correlations are treated using unifying concepts of order and elementary excitations. The main theoretical tools used to treat these problems are introduced and explained in a simple way, and their applications are demonstrated through concrete examples.
Download or read book Electron Spin Resonance written by Charles P. Poole and published by Courier Corporation. This book was released on 1996-01-01 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second edition of classic reference contains comprehensive coverage of experimental techniques, theoretical and practical aspects of ESR instrumentation. Recent developments, plus how to build, use ESR spectrometer. References. 1982 edition.
Download or read book Topics In Nanoscience Part I Basic Views Complex Nanosystems Typical Results And Future written by Wolfram Schommers and published by World Scientific. This book was released on 2021-12-17 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.
Download or read book A Modern Course in the Quantum Theory of Solids written by Fuxiang Han and published by World Scientific. This book was released on 2013 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids." The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.