Download or read book Time Domain Electromagnetics written by Sadasiva M. Rao and published by Elsevier. This book was released on 1999-07-26 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics deals with a specific technique in electromagnetics within the general area of electrical engineering. This mathematical method has become a standard for a wide variety of applications for design and problem solving. This method of analysis in electromagnetics is directly related to advances in cellular and mobile communications technology, as well as traditional EM areas such as radar, antennas, and wave propagation. Most of the material is available in the research journals which is difficult for a non-specialist to locate, read, understand, and effectively use for the problem at hand. - Only book currently available to practicing engineers and research scientists exclusively devoted to this subject - Includes contributions by the world's leading experts in electromagnetics - Presents the most popular methods used in time domain analysis are included at one place with thorough discussion of the methods in an easily understandable style - In each chapter, many simple and practical examples are discussed thoroughly to illustrate the salient points of the material presented - All chapters are written in a consistent style that allows the book to be of use for self-study by professionals as well as for use in a graduate-level course in electrical engineering
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Essentials of Computational Electromagnetics written by Xin-Qing Sheng and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem
Download or read book MATLAB based Finite Element Programming in Electromagnetic Modeling written by Özlem Özgün and published by CRC Press. This book was released on 2018-09-03 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.
Download or read book Advances in Information Technologies for Electromagnetics written by Luciano Tarricone and published by Springer Science & Business Media. This book was released on 2022-07-18 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a broad panorama on recently achieved and potentially obtainable advances in electromagnetics with innovative IT technologies. Simple tutorial chapters introduce cutting edge technologies. These include parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures. The book is a unique tool bridging the gap between IT and EM communities.
Download or read book Electromagnetic Fields written by Jean G. Van Bladel and published by John Wiley & Sons. This book was released on 2007-05-23 with total page 1171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
Download or read book Finite Element Analysis of Antennas and Arrays written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2009-02-23 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Most Complete, Up-to-Date Coverage of the Finite Element Analysis and Modeling of Antennas and Arrays Aimed at researchers as well as practical engineers—and packed with over 200 illustrations including twenty-two color plates—Finite Element Analysis of Antennas and Arrays presents: Time- and frequency-domain formulations and mesh truncation techniques Antenna source modeling and parameter calculation Modeling of complex materials and fine geometrical details Analysis and modeling of narrowband and broadband antennas Analysis and modeling of infinite and finite phased-array antennas Analysis and modeling of antenna and platform interactions Recognizing the strengths of other numerical methods, this book goes beyond the finite element method and covers hybrid techniques that combine the finite element method with the finite difference time-domain method, the method of moments, and the high-frequency asymptotic methods to efficiently deal with a variety of complex antenna problems. Complemented with numerous examples, this cutting-edge resource fully demonstrates the power and capabilities of the finite element analysis and its many practical applications.
Download or read book Computational Electromagnetics for RF and Microwave Engineering written by David B. Davidson and published by Cambridge University Press. This book was released on 2005-02-24 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical approximation of Maxwell's equations, Computational Electromagnetics (CEM), has emerged as a crucial enabling technology for radio-frequency, microwave and wireless engineering. The three most popular 'full-wave' methods - the Finite Difference Time Domain Method, the Method of Moments and the Finite Element Method - are introduced in this book by way of one or two-dimensional problems. Commercial or public domain codes implementing these methods are then applied to complex, real-world engineering problems, and a careful analysis of the reliability of the results obtained is performed, along with a discussion of the many pitfalls which can result in inaccurate and misleading solutions. The book will empower readers to become discerning users of CEM software, with an understanding of the underlying methods, and confidence in the results obtained. It also introduces readers to the art of code development. Aimed at senior undergraduate/graduate students taking CEM courses and practising engineers in the industry.
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1995 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Electromagnetic Waves in Complex Systems written by Yuriy Sirenko and published by Springer. This book was released on 2016-05-24 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives guidance to solve problems in electromagnetics, providing both examples of solving serious research problems as well as the original results to encourage further investigations. The book contains seven chapters on various aspects of resonant wave scattering, each solving one original problem. All of them are unified by the authors’ desire to show advantages of rigorous approaches at all stages, from the formulation of a problem and the selection of a method to the interpretation of results. The book reveals a range of problems associated with wave propagation and scattering in natural and artificial environments or with the design of antennas elements. The authors invoke both theoretical (analytical and numerical) and experimental techniques for handling the problems. Attention is given to mathematical simulations, computational efficiency, and physical interpretation of the experimental results. The book is written for students, graduate students and young researchers.
Download or read book Coplanar Microwave Integrated Circuits written by Ingo Wolff and published by John Wiley & Sons. This book was released on 2006-07-11 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: The tools and techniques to fully leverage coplanar technology Coplanar Microwave Integrated Circuits sets forth the theoretical underpinnings of coplanar waveguides and thoroughly examines the various coplanar components such as discontinuities, lumped elements, resonators, couplers, and filters, which are essential for microwave integrated circuit design. Based on the results of his own research findings, the author effectively demonstrates the many advantages of coplanar waveguide technology for modern circuit design. Following a brief introductory chapter, the text thoroughly covers the material needed for successful design and realization of coplanar microwave circuits, including: * Fundamental transmission properties of coplanar waveguides using a full wave analysis * Detailed analysis of most discontinuities used in coplanar waveguide design * Lumped elements in coplanar technology that are needed in circuit design * Development of software for coplanar circuit design, including a CD-ROM containing a test version of the software for modeling coplanar circuit components and circuits * Application of derived results to build more complex components such as lumped element filters, waveguide filters, millimeter wave filters, end-coupled waveguide structures, waveguide couplers, and Wilkinson couplers for different frequency ranges in coplanar technology The final chapter focuses on special coplanar microwave integrated circuits that have been developed using the software presented in the text. The book concludes with a thought-provoking discussion of the advantages and disadvantages of the coplanar technique. Extensive use of figures and tables helps readers easily digest and visualize complex concepts. A bibliography is included at the end of each chapter for further study and research. Coplanar Microwave Integrated Circuits is recommended for graduate students and engineers in RF microwaves who want to reap all the advantages and possibilities of coplanar technology.
Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Download or read book Foundations of Applied Electrodynamics written by Wen Geyi and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Applied Electrodynamics takes a fresh look at the essential concepts and methods of electrodynamics as a whole, uniting the most relevant contemporary topics under a common mathematical framework. It contains clear explanations of high-level concepts as well as the mutual relationships between the essential ideas of electromagnetic theory. Starting with the fundamentals of electrodynamics, it methodically covers a wide spectrum of research and applications that stem from electromagnetic phenomena, before concluding with more advanced topics such as quantum mechanics. Includes new advances and methodologies in applied electrodynamics, and provides the whole picture of the theory of electrodynamics in most active areas of engineering applications Systematically deals with eigenvalue problems, integral equation formulations and transient phenomena in various areas of applied electrodynamics Introduces the complete theory of spherical vector wave functions, and presents the upper bounds of the product of gain and bandwidth for an arbitrary antenna Presents the field approach to multiple antenna system, which provides a theoretical tool for the prediction of channel models of MIMO, and is also the basis of wireless power transmission system One of the first books on electromagnetics that contains the general theory of relativity, which is needed in the design of mobile systems such as global positioning system (GPS) By summarising both engineering and theoretical electromagnetism in one volume, this book is an essential reference for practicing engineers, as well as a guide for those who wish to advance their analytical techniques for studying applied electrodynamics.
Download or read book Emerging Waveguide Technology written by Kok Yeow You and published by BoD – Books on Demand. This book was released on 2018-08-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the rapid development of radiofrequency (RF)/microwave and photonic/optical waveguide technologies has had a significant impact on the current electronic industrial, medical and information and communication technology (ICT) fields. This book is a self-contained collection of valuable scholarly papers related to waveguide design, modeling, and applications. This book contains 20 chapters that cover three main subtopics of waveguide technologies, namely RF and microwave waveguide, photonic and optical waveguide and waveguide analytical solutions. Hence, this book is particularly useful to the academics, scientists, practicing researchers and postgraduate students whose work relates to the latest waveguide technologies.
Download or read book Applied Science Technology Index written by and published by . This book was released on 2000 with total page 1688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range written by Islam Islamov and published by Springer Nature. This book was released on with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Techniques in Electromagnetics with MATLAB written by Matthew N.O. Sadiku and published by CRC Press. This book was released on 2018-10-08 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the dramatic growth in the availability of powerful computer resources, the EM community lacks a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. This third edition of the bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also has added a chapter on the method of lines. Numerical Techniques in Electromagnetics with MATLAB®, Third Edition continues to teach readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Now the Third Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems and includes MATLAB code instead of FORTRAN.