EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Three Dimensional Geothermal Fairway Mapping

Download or read book Three Dimensional Geothermal Fairway Mapping written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady's geothermal system and a 'greenfield' geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal 'fairways', areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

Book Three Dimensional Geologic Characterization of a Great Basin Geothermal System

Download or read book Three Dimensional Geologic Characterization of a Great Basin Geothermal System written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

Book Advancements in 3D Structural Analysis of Geothermal Systems

Download or read book Advancements in 3D Structural Analysis of Geothermal Systems written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady's geothermal system and a 'greenfield' geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady's, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1:24,000 scale detailed geologic map and cross-sections, 2D seismic reflection profiles and other geophysical data, and downhole temperature data. The 3D geologic model based on these data consists of 61 fault planes, 25 distinct stratigraphic units, and 2 intrusive bodies. Geothermal fluids are produced from a left step-over/relay ramp within the Brady's Fault Zone (BFZ). Under local stress conditions, fault segments that strike NNE-to-NE are most likely to slip and/or dilate, and therefore transmit geothermal fluids. The 3D model defines the locations of discrete fault intersections within the BFZ and indicates that the densest zones of structurally controlled fracture permeability are ~10-to-10s of meters in diameter and plunge ~55° NW-NNW beneath the heart of the BFZ step over. The locations of high intersection density, high fault slip and dilation tendency, high subsurface temperature, and lithologies known to support high fracture permeability are combined to produce 3D 'fairway' maps useful in both assessments of geothermal resource potential and for defining drilling targets. Astor Pass is located on the Pyramid Lake Paiute Reservation, ~80 km north of Reno, NV. It is a prospective 'greenfield' geothermal area, and thus subsurface data are relatively sparse. Available data include: two relatively deep wells (~1400 m) and one shallower well (~500 m) with lithologies interpreted from drill cuttings, several 2D seismic reflection profiles, a 1:24,000 scale geologic map and cross-section, a shallow temperature survey, and downhole temperature data. 3D modeling based on these data has defined 19 distinct fault planes and 16 stratigraphic units. Based on the stress field calculated from borehole breakouts, drilling induced tensile cracks and petal-centerline cracks in the two relatively deep wells, 3D slip and dilation tendency analysis indicates that northerly striking fault segments are most likely to slip and/or dilate, and therefore transmit geothermal fluids. Analysis of fault ...

Book Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition

Download or read book Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition written by Mohammadali Ahmadi and published by Elsevier. This book was released on 2024-07-13 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition: Case Studies and Code Examples presents a package for academic researchers and industries working on water resources and carbon capture and storage. This book contains fundamental knowledge on artificial intelligence related to oil and gas sustainability and the industry's pivot to support the energy transition and provides practical applications through case studies and coding flowcharts, addressing gaps and questions raised by academic and industrial partners, including energy engineers, geologists, and environmental scientists. This timely publication provides fundamental and extensive information on advanced AI applications geared to support sustainability and the energy transition for the oil and gas industry. - Reviews the use and applications of AI in energy transition of the oil and gas sectors - Provides fundamental knowledge and academic background of artificial intelligence, including practical applications with real-world examples and coding flowcharts - Showcases the successful implementation of AI in the industry (including geothermal energy)

Book Three Dimensional Geologic Characterization of Geothermal Systems

Download or read book Three Dimensional Geologic Characterization of Geothermal Systems written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

Book 3 Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems

Download or read book 3 Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

Book Three dimensional Geologic Mapping

Download or read book Three dimensional Geologic Mapping written by John P. Kempton and published by . This book was released on 1984 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment of Surface Geophysical Methods in Geothermal Exploration and Recommendations for Future Research

Download or read book Assessment of Surface Geophysical Methods in Geothermal Exploration and Recommendations for Future Research written by N. E. Goldstein and published by . This book was released on 1978 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Gulf of Mexico Sedimentary Basin

Download or read book The Gulf of Mexico Sedimentary Basin written by John W. Snedden and published by Cambridge University Press. This book was released on 2019-11-21 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and richly illustrated overview of the Gulf of Mexico Basin, including its reservoirs, source rocks, tectonics and evolution.

Book Geopressured Geothermal Fairway Evaluation and Test well Site Location  Frio Formation  Texas Gulf Coast

Download or read book Geopressured Geothermal Fairway Evaluation and Test well Site Location Frio Formation Texas Gulf Coast written by and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tertiary strata of the Texas Gulf Coast comprise a number of terrigenous depositional wedges, some of which thicken abruptly at their downdip ends as a result of contemporaneous movement of growth faults and underlying salt. The Frio Formation, one of these wedges, has been studied regionally by means of a grid of correlation cross sections aided by micropaleontological control. By means of these sections, the Frio was subdivided into six map units; maps of sandstone distribution within these units delineate principal elongate sandstone trends parallel to the Gulf Coast composed of deltaic, barrier-bar, and strandplain sandstones. These broad regional studies, followed by detailed local investigations, were pursued in order to delineate prospective areas for production of geopressured geothermal energy. A prospective area must meet the following minimum requirements; reservoir volume of 3 cubic miles, minimum permeability of 20 millidarcys (md), and fluid temperatures of 300°F. Several geothermal fairways were identified as a result of this Frio study. In summary, detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At least 30% of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300°F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feed of methane in solution in this water.

Book Three dimensional Geological Mapping

Download or read book Three dimensional Geological Mapping written by Richard C. Berg and published by . This book was released on 2018 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Case Study of the Newcastle Geothermal System  Iron County  Utah

Download or read book A Case Study of the Newcastle Geothermal System Iron County Utah written by Robert E. Blackett and published by . This book was released on 1992 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Past exploration in low- and moderate-temperature systems of the Great Basin shows that the relatively small area associated with fluid upflow and elevated temperatures is often difficult to detect by drilling widely spaced temperature-gradient holes or by other methods. By studying the Newcastle geothermal system, we hoped to develop a basic understanding of the concealed hydrothemlal system as a tool for assessing other geothermal areas of the Great Basin. The emphasis of our work centered on determining (1) the distribution of subsurface heat and the movement of thermal fluid, (2) the location and geometry of bedrock structures that might control fluid movements, (3) the chemical character of the geothermal water, and (4) the geometry of the bedrock beneath the Escalante Desert. Field studies included: (1) drilling and monitoring temperatures in shallow themlal-gradient boreholes, (2) mapping geologic units and performing structural studies in the adjacent mountains, (3) conducting detailed gravity surveys, (4) conducting electrical resistivity and self-potential (SP) surveys, (5) collecting water samples for detennining major ions and light stable isotope analyses, and (6) mapping Quaternary units.

Book Appalachian Basin Play Fairway Analysis

Download or read book Appalachian Basin Play Fairway Analysis written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or 'risks': thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain "item description" documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields. R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation. R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation. R for the cross validations used in the thermal interpolations. Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015. Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.

Book Three dimensional Modelling and Geothermal Process Simulation

Download or read book Three dimensional Modelling and Geothermal Process Simulation written by and published by . This book was released on 1990 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subsurface geological model or 3-D GIS is constructed from three kinds of objects, which are a lithotope (in boundary representation), a number of fault systems, and volumetric textures (vector fields). The chief task of the model is to yield an estimate of the conductance tensors (fluid permeability and thermal conductivity) throughout an array of voxels. This is input as material properties to a FEHM numerical physical process model. The main task of the FEHM process model is to distinguish regions of convective from regions of conductive heat flow, and to estimate the fluid phase, pressure and flow paths. The temperature, geochemical, and seismic data provide the physical constraints on the process. The conductance tensors in the Franciscan Complex are to be derived by the addition of two components. The isotropic component is a stochastic spatial variable due to disruption of lithologies in melange. The deviatoric component is deterministic, due to smoothness and continuity in the textural vector fields. This decomposition probably also applies to the engineering hydrogeological properties of shallow terrestrial fluvial systems. However there are differences in quantity. The isotropic component is much more variable in the Franciscan, to the point where volumetric averages are misleading, and it may be necessary to select that component from several, discrete possible states. The deviatoric component is interpolated using a textural vector field. The Franciscan field is much more complicated, and contains internal singularities. 27 refs., 10 figs.