EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theories of Molecular Reaction Dynamics

Download or read book Theories of Molecular Reaction Dynamics written by Niels E. Henriksen and published by Oxford University Press, USA. This book was released on 2008 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.

Book Theory of Chemical Reaction Dynamics

Download or read book Theory of Chemical Reaction Dynamics written by Antonio Laganà and published by Springer Science & Business Media. This book was released on 2006-03-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, held in Balatonföldvár, Hungary, 8-12 June 2003

Book Molecular Reaction Dynamics

Download or read book Molecular Reaction Dynamics written by Raphael D. Levine and published by Cambridge University Press. This book was released on 2009-06-04 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.

Book Chemical Kinetics and Reaction Dynamics

Download or read book Chemical Kinetics and Reaction Dynamics written by Santosh K. Upadhyay and published by Springer Science & Business Media. This book was released on 2007-04-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.

Book Chemical Kinetics and Reaction Dynamics

Download or read book Chemical Kinetics and Reaction Dynamics written by Paul L. Houston and published by Courier Corporation. This book was released on 2012-10-10 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVThis text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. Solutions to selected problems. 2001 edition. /div

Book Modern Trends in Chemical Reaction Dynamics

Download or read book Modern Trends in Chemical Reaction Dynamics written by Xueming Yang and published by World Scientific. This book was released on 2004 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Provides a detailed picture of the current status of advanced experimental and theoretical research in chemical reaction dynamics. Topics include the Doppler-selected time-of-flight technique, multimass ion imaging, and photodissociation dynamics of free radicals.

Book Collision Theory and Statistical Theory of Chemical Reactions

Download or read book Collision Theory and Statistical Theory of Chemical Reactions written by S. G. Christov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the discovery of quantum mechanics,more than fifty years ago,the theory of chemical reactivity has taken the first steps of its development. The knowledge of the electronic structure and the properties of atoms and molecules is the basis for an un derstanding of their interactions in the elementary act of any chemical process. The increasing information in this field during the last decades has stimulated the elaboration of the methods for evaluating the potential energy of the reacting systems as well as the creation of new methods for calculation of reaction probabili ties (or cross sections) and rate constants. An exact solution to these fundamental problems of theoretical chemistry based on quan tum mechanics and statistical physics, however, is still impossible even for the simplest chemical reactions. Therefore,different ap proximations have to be used in order to simplify one or the other side of the problem. At present, the basic approach in the theory of chemical reactivity consists in separating the motions of electrons and nu clei by making use of the Born-Oppenheimer adiabatic approximation to obtain electronic energy as an effective potential for nuclear motion. If the potential energy surface is known, one can calculate, in principle, the reaction probability for any given initial state of the system. The reaction rate is then obtained as an average of the reaction probabilities over all possible initial states of the reacting ~artic1es. In the different stages of this calculational scheme additional approximations are usually introduced.

Book Reaction Rate Theory and Rare Events

Download or read book Reaction Rate Theory and Rare Events written by Baron Peters and published by Elsevier. This book was released on 2017-03-22 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises

Book Reaction Rate Constant Computations

Download or read book Reaction Rate Constant Computations written by Keli Han and published by Royal Society of Chemistry. This book was released on 2014 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: The reaction rate constant plays an essential role a wide range of processes in biology, chemistry and physics. Calculating the reaction rate constant provides considerable understanding to a reaction and this book presents the latest thinking in modern rate computational theory. The editors have more than 30 years' experience in researching the theoretical computation of chemical reaction rate constants by global dynamics and transition state theories and have brought together a global pool of expertise discussing these in a variety of contexts and across all phases. This thorough treatment of the subject provides an essential handbook to students and researchers entering the field and a comprehensive reference to established practitioners across the sciences, providing better tools to determining reaction rate constants.

Book Tutorials in Molecular Reaction Dynamics

Download or read book Tutorials in Molecular Reaction Dynamics written by Mark Brouard and published by Royal Society of Chemistry. This book was released on 2015-11-09 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this excellent textbook is the topic of molecular reaction dynamics. The chapters are all written by internationally recognised researchers and, from the outset, the contributors are writing with the young scientist in mind. The easy to use, stand-alone, chapters make it of value to students, teachers, and researchers alike. Subjects covered range from the more traditional topics, such as potential energy surfaces, to more advanced and rapidly developing areas, such as femtochemistry and coherent control. The coverage of reaction dynamics is very broad, so many students studying chemical physics will find elements of this text interesting and useful. Tutorials in Molecular Reaction Dynamics includes extensive references to more advanced texts and research papers, and a series of 'Study Boxes' help readers grapple with the more difficult concepts. Each chapter is thoroughly cross-referenced, helping the reader to link concepts from different branches of the subject. Worked problems are included, and each chapter concludes with a selection of problems designed to test understanding of the subjects covered. Supplementary reading material, and worked solutions to the problems, are contained on a secure website.

Book Vibrational Dynamics Of Molecules

Download or read book Vibrational Dynamics Of Molecules written by Joel M Bowman and published by World Scientific. This book was released on 2022-06-14 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.

Book Chemical Kinetics and Dynamics

Download or read book Chemical Kinetics and Dynamics written by Jeffrey I. Steinfeld and published by Pearson. This book was released on 1999 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a balanced presentation of the macroscopic view of empirical kinetics and the microscopic molecular viewpoint of chemical dynamics. This second edition includes the latest information, as well as new topics such as heterogeneous reactions in atmospheric chemistry, reactant product imaging, and molecular dynamics of H + H2.

Book Advanced Molecular Dynamics and Chemical Kinetics

Download or read book Advanced Molecular Dynamics and Chemical Kinetics written by Gert Due Billing and published by Wiley-Interscience. This book was released on 1997-04-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, in-depth presentation of theoretical underpinnings and mathematical techniques This is the first book of its kind to combine all the theories of molecular reaction dynamics and chemical kinetics in a single source. It provides a sophisticated treatment of the material that functions both as a professional reference and a high-level text for PhD and postdoctoral researchers. Advanced Molecular Dynamics and Chemical Kinetics offers exceptional, in-depth coverage and includes a complete discussion of the theoretical as well as mathematical presentation of techniques. It features relevant exercises as well as comprehensive coverage of: * Second Quantization * Semiclassical Theory * Quantum Theory of Reaction Rates * Feynman Path Integrals * Wavepacket Propagation and Grid Methods * Photodissociation * Molecular Properties of Solvated Molecules * Quantum Model for Electron Transfer * Electron Transfer Coupling Elements * Proton Transfer Reactions in Solution This is the ideal reference for seasoned professionals in molecular reaction dynamics as well as for younger researchers who may want to enter the field or simply wish to learn more about it. Also available: Introduction to Molecular Dynamics and Chemical Kinetics Gert D. Billing and Kurt V. Mikkelsen

Book Kinetics and Dynamics of Elementary Gas Reactions

Download or read book Kinetics and Dynamics of Elementary Gas Reactions written by Ian W. M. Smith and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended primarily for working kineticists and chemists, but is also beneficial to graduate students.

Book A Textbook of Physical Chemistry     Volume 1

Download or read book A Textbook of Physical Chemistry Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.

Book Chemical Reaction Networks

Download or read book Chemical Reaction Networks written by Oleg N. Temkin and published by CRC Press. This book was released on 2020-07-24 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade, increased attention to reaction dynamics, combined with the intensive application of computers in chemical studies, mathematical modeling of chemical processes, and mechanistic studies has brought graph theory to the forefront of research. It offers an advanced and powerful formalism for the description of chemical reactions and their intrinsic reaction mechanisms. Chemical Reaction Networks: A Graph-Theoretical Approach elegantly reviews and expands upon graph theory as applied to mechanistic theory, chemical kinetics, and catalysis. The authors explore various graph-theoretical approaches to canonical representation, numbering, and coding of elementary steps and chemical reaction mechanisms, the analysis of their topological structure, the complexity estimation, and classification of reaction mechanisms. They discuss topologically distinctive features of multiroute catalytic and noncatalytic and chain reactions involving metal complexes. With it's careful balance of clear language and mathematical rigor, the presentation of the authors' significant original work, and emphasis on practical applications and examples, Chemical Reaction Networks: A Graph Theoretical Approach is both an outstanding reference and valuable tool for chemical research.

Book Dynamics of Molecular Collisions

Download or read book Dynamics of Molecular Collisions written by W. Miller and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration he re beginning about fifteen years aga when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular be am method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not.