EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory of Block Polymer Self Assembly

Download or read book Theory of Block Polymer Self Assembly written by Benjamin R. Magruder and published by American Chemical Society. This book was released on 2024-03-13 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer introduces the theory of self-assembly of block polymers, most notably self-consistent field theory (SCFT). Block polymer self-assembly is a fascinating and highly interdisciplinary topic. This primer can be read at several levels, depending on what readers want to get out of it. Readers who want an overview of self-assembly in block polymer and what SCFT says about the process can read Chapters 1-3 and skip to Chapter 7 to see the open questions. If the reader is further interested in the output of SCFT calculations but not how those outputs are generated, they should read Chapter 6 as well. But if the reader wants to learn how to do the SCFT calculations themselves, Chapters 4 and 5 offer an accessible introduction to the theory and numerical methods, providing an excellent entry point into the literature. This primer includes data that the authors have computed using SCFT. All calculations use the open-source software package Polymer Self-Consistent Field (PSCF), developed by David Morse at the University of Minnesota. Take breaks from reading to watch ten “Insider Q&A” videos included throughout, which offer additional insight from experts in the field, such as An-Chang Shi, Chinedum O. Osuji, Frank S. Bates, Christopher M. Bates, Glenn H. Fredrickson, and Lisa Hall. Furthermore, this primer includes multiple features to aid and enhance readers’ learning. “That’s a Wrap” summarizes key concepts at the end of each chapter, while “Read These Next” suggests references that may interest further reading. A pop-up glossary ensures readers have definitions as needed throughout the primer.

Book Block Copolymers in Solution

Download or read book Block Copolymers in Solution written by Ian W. Hamley and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling. The present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts. The book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.

Book Block Copolymers I

Download or read book Block Copolymers I written by Volker Abetz and published by Springer Science & Business Media. This book was released on 2005-12-02 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 N. Hadjichristidis, M. Pitsikalis, H. Iatrou: Synthesis of Block Copolymers.- 2 V. Abetz: Phase Behaviour and Morphologies of Block Copolymers.-

Book Amphiphilic Block Copolymers

Download or read book Amphiphilic Block Copolymers written by Björn Lindman and published by Elsevier Science Limited. This book was released on 2000 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book. The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.

Book Modeling Self assembly and Structure property Relationships in Block Copolymers

Download or read book Modeling Self assembly and Structure property Relationships in Block Copolymers written by Manas Ravindra Shah and published by . This book was released on 2009 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers have been subject of tremendous research interest owing to their capability of undergoing self-assembly which allows them to tailor their electrical, optical, and mechanical properties. Statistical mechanics of flexible block copolymers is well understood. However, there are many unresolved issues with confinement of block copolymers as well as structure formation in block copolymers having non-flexible polymer blocks. We develop mean field theory models to address the issues arising in thermodynamics of such complex block copolymers. Also, we develop theoretical formalisms to understand the link between morphology and macroscopic properties in these block copolymers. We study the stability and ordering in thin films of flexible diblock copolymer in the presence of compressible solvent using a combined polymer mean field theory and lattice gas model for binary fluid mixtures. We utilize mean field theory model to understand the self-assembly behavior in side-chain liquid crystalline block copolymers which involve interplay between microphase separation and liquid crystalline ordering of side chain mesogenic units. We extend the field theoretic models for block copolymer to account for self-assembly in semicrystalline block copolymers. The semicrystalline chain is modeled as a semiflexible chain having non-bonded attractions between parallel bonds. We characterize the structure formation in such block copolymers as a function of the rigidity of the semicrystalline chain. Then we extend the formalism to study semicrystalline triblock and pentablock copolymers and evaluate bridging fractions in different sequences of semicrystalline multiblock copolymers. Rod-coil block copolymers have a flexible polymer covalently linked to rigid polymer. Such polymers have potential applications as organic LEDs and photovoltaic devices. We study the self-assembly of such block copolymer under confinement. To make these block copolymers viable as photovoltaic devices, we performed the photovoltaic modeling of devices based on self-assembly of block copolymers. We characterize the interplay between self-assembly and anisotropy of charge transport (arising due to rigid polymer chains) in determining the eventual photovoltaic properties.

Book Theory of Self assembly of Block Copolymers

Download or read book Theory of Self assembly of Block Copolymers written by Chien-Yueh Huang and published by . This book was released on 1997 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self Assembly

    Book Details:
  • Author : Ramanathan Nagarajan
  • Publisher : John Wiley & Sons
  • Release : 2019-01-07
  • ISBN : 1119001366
  • Pages : 364 pages

Download or read book Self Assembly written by Ramanathan Nagarajan and published by John Wiley & Sons. This book was released on 2019-01-07 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the state-of-the-art of the diverse self-assembly systems Self-Assembly: From Surfactants to Nanoparticles provides an effective entry for new researchers into this exciting field while also giving the state of the art assessment of the diverse self-assembling systems for those already engaged in this research. Over the last twenty years, self-assembly has emerged as a distinct science/technology field, going well beyond the classical surfactant and block copolymer molecules, and encompassing much larger and complex molecular, biomolecular and nanoparticle systems. Within its ten chapters, each contributed by pioneers of the respective research topics, the book: Discusses the fundamental physical chemical principles that govern the formation and properties of self-assembled systems Describes important experimental techniques to characterize the properties of self-assembled systems, particularly the nature of molecular organization and structure at the nano, meso or micro scales. Provides the first exhaustive accounting of self-assembly derived from various kinds of biomolecules including peptides, DNA and proteins. Outlines methods of synthesis and functionalization of self-assembled nanoparticles and the further self-assembly of the nanoparticles into one, two or three dimensional materials. Explores numerous potential applications of self-assembled structures including nanomedicine applications of drug delivery, imaging, molecular diagnostics and theranostics, and design of materials to specification such as smart responsive materials and self-healing materials. Highlights the unifying as well as contrasting features of self-assembly, as we move from surfactant molecules to nanoparticles. Written for students and academic and industrial scientists and engineers, by pioneers of the research field, Self-Assembly: From Surfactants to Nanoparticles is a comprehensive resource on diverse self-assembly systems, that is simultaneously introductory as well as the state of the art.

Book Block Copolymer Self assembly   a Computational Approach Towards Novel Morphologies

Download or read book Block Copolymer Self assembly a Computational Approach Towards Novel Morphologies written by Karim Raafat Gadelrab and published by . This book was released on 2019 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spontaneous self-assembly of materials is a phenomenon exhibited by different molecular systems. Among many, Block copolymers (BCPs) proved to be particularly interesting due to their ability to microphase separate into periodic domains. Nonetheless, the rising need for arbitrary, complex, 3D nanoscale morphology shows that what is commonly achievable is quite limited. Expanding the range of BCPs morphologies could be attained through the implementation of a host of strategies that could be used concurrently. Using directed self-assembly (DSA), a sphere forming BCP was assembled in a randomly displaced post template to study system resilience towards defect creation. Template shear-like distortion seemed to govern local defect generation. Defect clusters with symmetries compatible with that of the BCP showed enhanced stability. Using 44 and 32434 Archimedean tiling templates that are incompatible with BCP six-fold symmetry created low symmetry patterns with an emergent behavior dependent on pattern size and shape. A variation of DSA is studied using modulated substrates. Layer-by-layer deposition of cylinder forming BCPs was investigated. Self-consistent field theory (SCFT) and strong segregation theory SST were employed to provide the understanding and the conditions under which particular orientations of consecutive layers were produced. Furthermore, deep functionalized trenches were employed to create vertically standing high-[chi] BCP structures. Changing annealing conditions for a self-assembled lamellar structure evolved the assembled pattern to a tubular morphology that is non-native to diblock copolymers. A rather fundamental but challenging strategy to go beyond the standard motifs common to BCPs is to synthesize multiblock molecules with an expanded design space. Triblock copolymers produced bilayer perforated lamellar morphology. SCFT analysis showed a large window of stability of such structures in thin films. In addition, a model for bottlebrush BCPs (BBCPs) was constructed to investigate the characteristics of BBCPs self-assembly. Pre-stacked diblock sidechains showed improved microphase separation while providing domain spacing relevant to lithography applications. A rich phase diagram was constructed at different block concentrations. The ability to explore new strategies to discover potential equilibrium morphologies in BCPs is supported by strong numerical modeling and simulations efforts. Accelerating SCFT performance would greatly benefit BCP phase discovery. Preliminary work discussed the first attempt to Neural Network (NN) assisted SCFT. The use of NN was able to cut on the required calculations steps to reach equilibrium morphology, demonstrating accelerated calculation, and escaping trapped states, with no effect on final structure.

Book Organic Polymers

    Book Details:
  • Author : Arpit Sand
  • Publisher : BoD – Books on Demand
  • Release : 2020-03-11
  • ISBN : 1789845734
  • Pages : 148 pages

Download or read book Organic Polymers written by Arpit Sand and published by BoD – Books on Demand. This book was released on 2020-03-11 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Organic Polymers, covers aspects that are of immediate concern to a new entrant to the field of polymers. Taken as a whole, these eight chapters aim to help the readers easily assimilate other specialized and exhaustive treatises on the subject. Topics dealing with the chemistry and technology of polymers are presented in a careful and logical manner so as to provide an easy and enjoyable read. Several examples and analogies are included so to make the main concepts easy to follow and tables and figures are included so that the book can serve, to a limited extent, as a hand book dealing with polysaccharides with different parameters. This book is meant for students studying polysaccharides and those working on graft copolymers and other allied polymer industries but without a formal educational background in organic polymers.

Book The Equilibrium Theory of Inhomogeneous Polymers

Download or read book The Equilibrium Theory of Inhomogeneous Polymers written by Glenn Fredrickson and published by Oxford University Press on Demand. This book was released on 2006 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a pedagogical introduction to the theoretical and computer simulation techniques that are useful in the design of polymer formulations including personal care products, multiphase plastic materials, processed foods, and colloidal and nanoparticle dispersions. The book serves to unify previous work in a common language and provides a balanced treatment of analytical theory and numerical techniques, including an introduction to the exciting new field offield-theoretic polymer simulations - the direct numerical simulation of field theory models of meso-structured polymer melts, solutions, and dispersions.

Book The Physics of Block Copolymers

Download or read book The Physics of Block Copolymers written by Ian W. Hamley and published by Oxford University Press on Demand. This book was released on 1998 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and systematic text is the first of its kind to deal with the fundamental physics underlying the remarkable structural and dynamical properties of block copolymers. It provides the polymer scientist and technologist with a firm grounding in the principles underlying the wide applications of these important materials. It also highlights the intrinsically fascinating properties of block copolymers, such as nanoscale self-assembly in bulk and two-dimensions. The first textof its kind on the subject since the mid-1980s, this book stands alone - previous texts have focused on the chemical and material properties of block copolymers. During the last decade, there have been major developments in the field, and these experimental and theoretical advances are discussed in depth. Topics covered include: the thermodynamics and dynamics of block copolymer melts, block copolymers in dilute, semidilute and concentrated solutions, the structure of crystalline block copolymers and block copolymers in blends with other polymers. This informative book is essential to the polymer physics and materials science researcher in industry and academia, and postgraduates in related fields. Final year undergraduate students in chemistry, physics and materials science will also find this book useful as a reference text.

Book Introduction to Block Copolymer Physics

Download or read book Introduction to Block Copolymer Physics written by An-Chang Shi and published by CRC Press. This book was released on 2019-01-15 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (macromolecules of two or more chemically distinct blocks) exhibit rich phase behavior, which has made them attractive for the design of novel polymer materials as well as for studies of self-assembly. This book provides a coherent, single source for the theoretical understanding of block copolymer self-assembly, and an introduction to the theory of phases and phase transitions in soft matter. It emphasizes self-consistent field theory, which provides a semi-quantitative description of the phase behavior of block copolymer melts and blends, while also surveying other approaches. The author also discusses technological applications and numerical methods.

Book Materials Nanoarchitectonics

Download or read book Materials Nanoarchitectonics written by Katsuhiko Ariga and published by Elsevier. This book was released on 2023-12-15 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures

Book Out of Equilibrium  Supra molecular Systems and Materials

Download or read book Out of Equilibrium Supra molecular Systems and Materials written by Nicolas Giuseppone and published by John Wiley & Sons. This book was released on 2021-03-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A must-have resource that covers everything from out-of-equilibrium chemical systems and materials to dissipative self-assemblies Out-of-Equilibrium Supramolecular Systems and Materials presents a comprehensive overview of the synthetic approaches that use supramolecular bonds in various out-of-thermodynamic equilibrium situations. With contributions from noted experts on the topic, the text contains information on the design of dissipative self-assemblies that maintain their structures when fueled by an external source of energy. The contributors also examine molecules and nanoscale objects and materials that can produce mechanical work based on molecular machines. Additionally, the book explores non-equilibrium supramolecular polymers that can be trapped in kinetically stable states, as well as out-of-equilibrium chemical systems and oscillators that are important to understand the emergence of complex behaviors and, in particular, the origin of life. This important book: Offers comprehensive coverage of fields from design of dissipative self-assemblies to non-equilibrium supramolecular polymers Presents information on a highly emerging and interdisciplinary topic Includes contributions from internationally renowned scientists Written for chemists, physical chemists, biochemists, material scientists, Out-of-Equilibrium Supramolecular Systems and Materials is an indispensable resource written by top scientists in the field.

Book Foundations of Molecular Modeling and Simulation

Download or read book Foundations of Molecular Modeling and Simulation written by Edward J. Maginn and published by Springer Nature. This book was released on 2021-03-25 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly informative and carefully presented book comprises select proceedings of Foundation for Molecular Modelling and Simulation (FOMMS 2018). The contents are written by invited speakers centered on the theme Innovation for Complex Systems. It showcases new developments and applications of computational quantum chemistry, statistical mechanics, molecular simulation and theory, and continuum and engineering process simulation. This volume will serve as a useful reference to researchers, academicians and practitioners alike.

Book Janus Particle Synthesis  Self Assembly and Applications

Download or read book Janus Particle Synthesis Self Assembly and Applications written by Shan Jiang and published by Royal Society of Chemistry. This book was released on 2012-11-30 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Named after the two-faced roman god, Janus particles have gained much attention due to their potential in a variety of applications, including drug delivery. This is the first book devoted to Janus particles and covers their methods of synthesis, how these particles self-assemble, and their possible uses. By following the line of synthesis, self-assembly and applications, the book not only covers the fundamental and applied aspects, but it goes beyond a simple summary and offers a logistic way of selecting the proper synthetic route for Janus particles for certain applications. Written by pioneering experts in the field, the book introduces the Janus concept to those new to the topic and highlights the most recent research progress on the topic for those active in the field and catalyze new ideas.

Book Modeling and Theoretical Design Methods for Directed Self assembly of Thin Film Block Copolymer Systems

Download or read book Modeling and Theoretical Design Methods for Directed Self assembly of Thin Film Block Copolymer Systems written by Adam Floyd Hannon and published by . This book was released on 2014 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) have become a highly studied material for lithographic applications due to their ability to self-assemble into complex periodic patterns with feature resolutions ranging from a few to 100s nm. BCPs form a wide variety of patterns due the combination of their enthalpic interactions promoting immiscibility between the blocks and the bonding constraint through their chain topology. The morphologies formed can be tailored through a directed self-assembly (DSA) process using chemical or topographical templates to achieve a desired thin film pattern. This method combines the traditional top-down lithographic methods with the bottom-up self-assembly process to obtain greater control over long range order, the local morphology, and overall throughput of the patterns produced. This work looks at key modeling challenges in optimizing BCP DSA to achieve precision morphology control, reproducibility, and defect control. Modeling techniques based on field theoretic simulations are used to both characterize and predict the morphological behavior of a variety of BCPs under a variety of processing conditions including solvent annealing and DSA under topographical boundary conditions. These methods aid experimental studies by saving time in performing experiments over wide parameter spaces as well as elucidating information that may not be available by current experimental techniques. Both forward simulation approaches are studied where parameters are varied over a wide range with phase diagrams of potential morphologies characterized and inverse design approaches where given target patterns are taken as simulation input and required conditions to produce those patterns are outputted from the simulation for experimental testing. The studies ultimately help identify the key control parameters in BCP DSA and enable a vast array of possible utility in the field.