Download or read book Theory of atomic collisions written by Nevill Francis Mott and published by . This book was released on 1965 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Theory of Slow Atomic Collisions written by E.E. Nikitin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
Download or read book R Matrix Theory of Atomic Collisions written by Philip George Burke and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Download or read book Polarization and Correlation Phenomena in Atomic Collisions written by Vsevolod V. Balashov and published by Springer Science & Business Media. This book was released on 2000-04-30 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".
Download or read book Theory of Electron Atom Collisions written by Philip G. Burke and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.
Download or read book Introduction to the Theory of Collisions of Electrons with Atoms and Molecules written by S.P. Khare and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.
Download or read book Atom Molecule Collision Theory written by Richard Barry Bernstein and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Download or read book Collisions of Electrons with Atoms and Molecules written by G.F. Drukarev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Download or read book Computational Atomic Physics written by Klaus Bartschat and published by Springer. This book was released on 2013-06-29 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
Download or read book Introduction to the Theory of Atomic Spectra written by I. I. Sobel'Man and published by Elsevier. This book was released on 2016-04-20 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Theory of Atomic Spectra is a systematic presentation of the theory of atomic spectra based on the modern system of the theory of angular momentum. Many questions which are of interest from the point of view of using spectroscopic methods for investigating various physical phenomena, including continuous spectrum radiation, excitation of atoms, and spectral line broadening, are discussed. This volume consists of 11 chapters organized into three sections. After a summary of elementary information on atomic spectra, including the hydrogen spectrum and the spectra of multi-electron atoms, the reader is methodically introduced to angular momentum, systematics of the levels of multi-electron atoms, and hyperfine structure of spectral lines. Relativistic corrections are also given consideration, with particular reference to the use of the Dirac equation to determine the stationary states of an electron in an arbitrary electromagnetic field. In addition, the book explores the Stark effect and the Zeeman effect, the interaction between atoms and an electromagnetic field, and broadening of spectral lines. The final chapter is devoted to the problem of atomic excitation by collisions. This book is intended for advanced-course university students, postgraduate students and scientists working on spectroscopy and spectral analysis, and also in the field of theoretical physics.
Download or read book The Theory of Atomic Collisions written by Sir Nevill Francis Mott and published by . This book was released on 1965 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Atomic and Ion Collisions in Solids and at Surfaces written by Roger Smith and published by Cambridge University Press. This book was released on 1997-01-13 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 1997 monograph on simulation for condensed matter physicists, materials scientists, chemists and electrical engineers.
Download or read book Quantum Theory of High Energy Ion Atom Collisions written by Dzevad Belkic and published by CRC Press. This book was released on 2008-11-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the Top Selling Physics Books according to YBP Library Services Suitable for graduate students, experienced researchers, and experts, this book provides a state-of-the-art review of the non-relativistic theory of high-energy ion-atom collisions. Special attention is paid to four-body interactive dynamics through the most important theoretical methods available to date by critically analyzing their foundation and practical usefulness relative to virtually all the relevant experimental data. Fast ion-atom collisions are of paramount importance in many high-priority branches of science and technology, including accelerator-based physics, the search for new sources of energy, controlled thermonuclear fusion, plasma research, the earth’s environment, space research, particle transport physics, therapy of cancer patients by heavy ions, and more. These interdisciplinary fields are in need of knowledge about many cross sections and collisional rates for the analyzed fast ion-atom collisions, such as single ionization, excitation, charge exchange, and various combinations thereof. These include two-electron transitions, such as double ionization, excitation, or capture, as well as simultaneous electron transfer and ionization or excitation and the like—all of which are analyzed in depth in this book. Quantum Theory of High-Energy Ion-Atom Collisions focuses on multifaceted mechanisms of collisional phenomena with heavy ions and atoms at non-relativistic high energies.
Download or read book Latest Advances in Atomic Cluster Collisions written by J. P. Connerade and published by World Scientific. This book was released on 2004 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: - The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
Download or read book Atomic Collisions written by Earl W. McDaniel and published by Wiley-VCH. This book was released on 1993-05-10 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with elastic, inelastic and reactive collisions between heavy particles. The impact energy range extends from sub-thermal to energies at which nuclear forces become significant. Although the focus is on experiment, theory is integrated with experimental discussions. Scattering resonances, beam monochromators, particle detectors, coincidence measurements and laser photodetachment are among the topics covered. Includes extensive references and problem sets.
Download or read book Scattering Theory written by John R. Taylor and published by Courier Corporation. This book was released on 2012-05-23 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text, intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering, emphasizes the time-dependent approach. 1983 edition.
Download or read book State of the art Reviews on Energetic Ion atom and Ion molecule Collisions written by Dževad Belkić and published by World Scientific Publishing Company. This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is based upon a part of the invited and contributing talks at the 25th International Symposium on Ion-Atom Collisions, ISIAC (biennial), held on July 23-25, 2017 in Palm Cove, Queensland, Australia. To aid the general reader, all the authors tried to present their chapters in the context of the development of the addressed particular themes and the underlying major ideas and intricacies. Some chapters contain new results that have not been previously published elsewhere. Whenever possible, the authors made their attempts to connect the basic research in atomic and molecular collision physics with some important applications in other branches of physics as well as across the physics borders. It is hoped that the material presented in this book will be interesting and useful to the beginners and specialists alike. The contents and expositions are deemed to be helpful to the beginners in assessing the potential overlap of some of the presented material with their own research themes and this might provide motivations for possible further upgrades. Likewise, specialists could take advantage of these reviews to see where the addressed themes were and where they are going, in order to acknowledge the fruits of the efforts made thus far and actively contribute to tailoring the directions of future research. Overall, this book is truly interdisciplinary. It judiciously combines experiments and theories within particle collision physics on atomic and molecular levels. It presents state-of-the-art fundamental research in this field. It addresses the possibilities for significant and versatile applications outside standard atomic and molecular collision physics ranging from astrophysics, surface as well as cluster physics/chemistry, hadron therapy in medicine and to the chemical industry. It is then, as Volume 2, fully in the spirit of the "Aims and Scope" of this book series by reference to its "Mission Statement"."-- Back cover.