EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theoretical Study of Correlation Between Structure and Function for Nanoparticle Catalysts

Download or read book Theoretical Study of Correlation Between Structure and Function for Nanoparticle Catalysts written by Liang Zhang and published by . This book was released on 2014 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The science and technology of catalysis is more important today than at any other time in our history due to the grand energy and environment challenges we are facing. With the explosively growth of computation power nowadays, computer simulation can play an increasingly important role in the design of new catalysts, avoiding the costly trail-and-error attempts and facilitating the development cycle. The goal to inverse design of new materials with desired catalytic property was once far off, but now achievable. The major focus of this dissertation is to find the general rules that govern the catalytic performance of a nanoparticle as the function of its structure. Three types of multi-metallic nanoparticles have been investigated in this dissertation, core-shell, random alloy and alloy-core@shell. Significant structural rearrangement was found on Au@Pt and Pd@Pt nanoparticle, which is responsible for a dramatic improvement in catalytic performance. Nonlin- ear binding trends were found and modeled for random alloy nanoparticles, providing a prescription for tuning catalytic activity through alloying. Studies of ORR on Pd/Au random alloy NP and hydrogenation reaction on Rh/Ag random alloy NP revealed that binding on individual ensemble should be in- vestigated when large disparity of adsorbate affinity is presented between two alloying elements. In the alloy-core@shell system, I demostrated a general linear correlations between the adsorbate binding energy to the shell of an alloy-core@shell nanoparticle and the composition of the core. This relation- ship allows for interpolation of the properties of single-core@shell particles and an approach for tuning the catalytic activity of the particle. A series of promising catalysts were then predicted for ORR, HER and CO oxidation. As a first attempt to bridge the material gap, bimetallic nano clus- ter supported on CeO2(111) was investigated for CO oxidation. A strong support-metal interaction induces a preferential segregation of the more reac- tive element to the NC-CeO2 perimeter, generating an interface with the Au component. (Au-Cu)/CeO2 was found to be optimal for catalyzing CO oxida- tion via a bifunctional mechanism. O2 preferentially binds to the Cu-rich sites whereas CO binds to the Au-rich sites. A method called distributed replica dynamics (DRD) is proposed at last to utilize enormous distributed computing resources for molecular dynamics simulations of rare-event in chemical reac- tions. High efficiency can be achieved with an appropriate choice of N [subscript rep] and t [subscript rep] for long-time MD simulation.

Book Metal Nanoparticles for Catalysis

Download or read book Metal Nanoparticles for Catalysis written by Franklin Tao and published by Royal Society of Chemistry. This book was released on 2014-06-12 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.

Book Correlation of Theory and Function in Well Defined Bimetallic Electrocatalysts   Final Report

Download or read book Correlation of Theory and Function in Well Defined Bimetallic Electrocatalysts Final Report written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.

Book Nanoparticles in Catalysis

Download or read book Nanoparticles in Catalysis written by Karine Philippot and published by John Wiley & Sons. This book was released on 2021-03-16 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

Book Catalysis By Gold

    Book Details:
  • Author : Geoffrey C Bond
  • Publisher : World Scientific
  • Release : 2006-08-15
  • ISBN : 1908979852
  • Pages : 383 pages

Download or read book Catalysis By Gold written by Geoffrey C Bond and published by World Scientific. This book was released on 2006-08-15 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a

Book Concepts of Modern Catalysis and Kinetics

Download or read book Concepts of Modern Catalysis and Kinetics written by I. Chorkendorff and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. '... such an enterprise will be of great value to the community, to professionals as well as graduate and undergraduate students attempting to move into the field of modern catalysis and kinetics. I strongly recommend you publish this book based on the proposal.' - Prof. Dr. G. A. Samorjai, University of California 'Both authors are well respected specialists, with a very long record of original top-quality work and an international reputation. A book from these authors will be considered an authoritative piece of work, I definitely support this project and I am looking forward to use the book when published.' - Prof. Dr. D. E. Resasco, University of Oklahoma 'I wholly support the proposed project. The authors are very competent young colleagues and there is a real need for such a textbook' - Prof. Dr. G. Ertl, Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin

Book Metal Nanoparticles for Catalysis

Download or read book Metal Nanoparticles for Catalysis written by Franklin (Feng) Tao and published by Royal Society of Chemistry. This book was released on 2014-06-30 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the synthesis and applications of different nanocatalysts.

Book Quantum chemical studies of deposition and catalytic surface reactions

Download or read book Quantum chemical studies of deposition and catalytic surface reactions written by Emil Kalered and published by Linköping University Electronic Press. This book was released on 2018-06-19 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum chemical calculations have been used to model chemical reactions in epitaxial growth of silicon carbide by chemical vapor deposition (CVD) processes and to study heterogeneous catalytic reactions for methanol synthesis. CVD is a common method to produce high-quality materials and e.g. thin films in the semiconductor industry, and one of the many usages of methanol is as a promising future renewable and sustainable energy carrier. To optimize the chemical processes it is essential to understand the reaction mechanisms. A comprehensive theoretical model for the process is therefore desired in order to be able to explore various variables that are difficult to investigate in situ. In this thesis reaction paths and reaction energies are computed using quantum chemical calculations. The quantum-chemical results can subsequently be used as input for thermodynamic, kinetic and computational fluid dynamics modelling in order to obtain data directly comparable with the experimental observations. For the CVD process, the effect of halogen addition to the gas mixture is studied by modelling the adsorption and diffusion of SiH2, SiCl2 and SiBr2 on the (0001?) 4H-SiC surface. SiH2 was found to bind strongest to the surface and SiBr2 binds slightly stronger than the SiCl2 molecule. The diffusion barrier is shown to be lower for SiH2 than for SiBr2 and SiCl2 which have similar barriers. SiBr2 and SiCl2 are found to have similar physisorption energies and bind stronger than the SiH2 molecule. Gibbs free-energy calculations also indicate that the SiC surface is not fully hydrogen terminated at CVD conditions since missing-neighboring pair of surface hydrogens is found to be common. Calculations for the (0001) surface show that SiCl, SiCl2, SiHCl, SiH, and SiH2 likely adsorb on a methylene site, but the processes are thermodynamically less favorable than their reverse reactions. However, the adsorbed products may be stabilized by subsequent surface reactions to form a larger structure. The formation of these larger structures is found to be fast enough to compete with the desorption processes. Also the Gibbs free energies for adsorption of Si atoms, SiX, SiX2, and SiHX where X is F or Br are presented. Adsorption of Si atoms is shown to be the most thermodynamically favorable reaction followed by SiX, SiHX, and SiX2, X being a halide. The results in this study suggest that the major Si contributors in the SiC–CVD process are Si atoms, SiX and SiH. Methanol can be synthesized from gaseous carbon dioxide and hydrogen using solid metal-metal oxide mixtures acting as heterogeneous catalysts. Since a large surface area of the catalyst enhances the speed of the heterogeneous reaction, the use of nanoparticles (NP) is expected to be advantageous due to the NPs’ large area to surface ratio. The plasma-induced creation of copper NPs is investigated. One important element during particle growth is the charging process where the variation of the work function (W) with particle size is a key quantity, and the variation becomes increasingly pronounced at smaller NP sizes. The work functions are computed for a set of NP charge numbers, sizes and shapes, using copper as a case study. A derived analytical expression for W is shown to give quite accurate estimates provided that the diameter of the NP is larger than about a nanometer and that the NP has relaxed to close to a spherical shape. For smaller sizes W deviates from the approximative expression, and also depends on the charge number. Some consequences of these results for NP charging process are outlined. Key reaction steps in the methanol synthesis reaction mechanism using a Cu/ZrO2 nanoparticle catalyst is investigated. Two different reaction paths for conversion of CO2 to CO is studied. The two paths result in the same complete reaction 2 CO2 ? 2 CO + O2 where ZrO2 (s) acts as a catalyst. The highest activation energies are significantly lower compared to that of the gas phase reaction. The presence of oxygen vacancies at the surface appear to be decisive for the catalytic process to be effective. Studies of the reaction kinetics show that when oxygen vacancies are present on the ZrO2 surface, carbon monoxide is produced within a microsecond. The IR spectra of CO2 and H2 interacting with ZrO2 and Cu under conditions that correspond to the catalyzed CH3OH production process is also studied experimentally and compared to results from the theoretical computations. Surface structures and gas-phase molecules are identified through the spectral lines by matching them to specific vibrational modes from the literature and from the new computational results. Several surface structures are verified and can be used to pin point surface structures in the reaction path. This gives important information that help decipher how the reaction mechanism of the CO2 conversion and ultimately may aid to improve the methanol synthesis process.

Book Catalysis and Electrocatalysis at Nanoparticle Surfaces

Download or read book Catalysis and Electrocatalysis at Nanoparticle Surfaces written by Andrzej Wieckowski and published by CRC Press. This book was released on 2003-02-19 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrating developments in electrochemical nanotechnology, heterogeneous catalysis, surface science and theoretical modelling, this reference describes the manipulation, characterization, control, and application of nanoparticles for enhanced catalytic activity and selectivity. It also offers experimental and synthetic strategies in nanoscale surface science. This standard-setting work clariefies several practical methods used to control the size, shape, crystal structure, and composition of nanoparticles; simulate metal-support interactions; predict nanoparticle behavior; enhance catalytic rates in gas phases; and examine catalytic functions on wet and dry surfaces.

Book Nanotechnology in Catalysis Volumes 1 and 2

Download or read book Nanotechnology in Catalysis Volumes 1 and 2 written by Bing Zhou and published by Springer Science & Business Media. This book was released on 2003-12-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly based on the first and second symposia on Nanotechnology in Catalysis held in 2001 and 2002, but it also includes several contributions not presented in the symposia to round out the scope of the subject. The contents are the most up to date developments made by researchers all over the world in the catalysis field in this fascinating nanotechnology era. It reflects some of the frontier areas of nanoscience and nanotechnology in fabricating and characterizing catalysts and carrying out studies to prove their superior selectivity and activity. The field of application of nanotechnology for the development of catalysts for green chemistry is likely to grow rapidly during the next decade. This book hopes to contribute to the evolution of nanotechnology in that direction.

Book Nanoalloys

Download or read book Nanoalloys written by Florent Calvo and published by Elsevier. This book was released on 2020-06-26 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoalloys, Second Edition, provides a self-contained reference on the physics and chemistry of nanoscale alloys, dealing with all important aspects that range from the theoretical concepts and the practical synthesis methods to the characterization tools. The book also covers modern applications of nanoalloys in materials science, catalysis or nanomedicine and discusses their possible toxicity. Covers fundamentals and applicative aspects of nanoalloys in a balanced presentation, including theoretical and experimental perspectives Describes physical and chemical approaches, synthesis and characterization tools Illustrates the potential benefit of alloying on various applications ranging from materials science to energy production and nanomedicine Updates and adds topics not fully developed at the time of the 1st edition, such as toxicity and energy applications

Book Nanocatalysis

Download or read book Nanocatalysis written by Ulrich Heiz and published by Springer Science & Business Media. This book was released on 2007-01-10 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanocatalysis, a subdiscipline of nanoscience, seeks to control chemical reactions by changing the size, dimensionality, chemical composition, and morphology of the reaction center and by changing the kinetics using nanopatterning of the reaction center. This book offers a detailed pedagogical and methodological overview of the field. Readers discover many examples of current research, helping them explore new and emerging applications.

Book Catalysis by Materials with Well Defined Structures

Download or read book Catalysis by Materials with Well Defined Structures written by Zili Wu and published by Academic Press. This book was released on 2015-03-26 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials. The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis. Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner Outlines the importance of nanomaterials and their potential as catalysts Provides detailed information on synthesis and characterization of nanomaterials with well-defined structures, relating surface activity to catalytic activity Details how to establish the structure-catalysis relationship and how to reveal the surface chemistry and surface structure of catalysts Offers examples on various in situ characterization instrumental techniques Includes in-depth theoretical modeling utilizing advanced Density Functional Theory (DFT) methods

Book Modeling and Simulation of Heterogeneous Catalytic Reactions

Download or read book Modeling and Simulation of Heterogeneous Catalytic Reactions written by Olaf Deutschmann and published by John Wiley & Sons. This book was released on 2013-09-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.

Book Theoretical Chemistry for Advanced Nanomaterials

Download or read book Theoretical Chemistry for Advanced Nanomaterials written by Taku Onishi and published by Springer Nature. This book was released on 2020-02-03 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects recent topics of theoretical chemistry for advanced nanomaterials from the points of view of both computational and experimental chemistry. It is written for computational and experimental chemists, including undergraduate students, who are working with advanced nanomaterials, where collaboration and interplay between computation and experiment are essential. After the general introduction of nanomaterials, several computational approaches are explained in Part II. Each chapter presents not only calculation methods but also concrete calculation results for advanced nanomaterials. Hydride ion conducting nanomaterials, high-k dielectric nanomaterials, and organic electronics are focused on. In Part III, the interplay between computational and experimental approaches is explained. The chapters show calculation results, combined with corresponding experimental data. Dimensionality of nanomaterials, electronic structure of oligomers and nanorods, carbon nanomaterials, and the electronic structure of a nanosized sandwich cluster is looked at carefully. In Part IV, functionality analysis is explained from the point of view of the experimental approach. The emphasis is on the mechanism of photoluminescence and hydrogen generation using silicon nanopowder, the superionic conducting mechanism of glass ceramics, nanoclusters formation on the surface of metal oxides, and the magnetic property of an organic one-dimensional nanochannel. Finally, forthcoming theoretical methods for excited states and quantum dynamics are introduced in Part V.

Book Computational Modelling of Nanoparticles

Download or read book Computational Modelling of Nanoparticles written by Stefan T. Bromley and published by Elsevier. This book was released on 2018-09-12 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research. Explores how computational modelling can be successfully applied at the nanoscale level Includes techniques for the computation modelling of different types of nanoclusters, including nanoalloy clusters, fullerines and Ligated and/or solvated nanoclusters Offers complete coverage of the use of computational modelling at the nanoscale, from characterization and processing, to applications