EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theoretical Neuroscience

Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Book Fundamentals of Computational Neuroscience

Download or read book Fundamentals of Computational Neuroscience written by Thomas Trappenberg and published by Oxford University Press. This book was released on 2010 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

Book Mathematical and Theoretical Neuroscience

Download or read book Mathematical and Theoretical Neuroscience written by Giovanni Naldi and published by Springer. This book was released on 2018-03-20 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

Book An Introductory Course in Computational Neuroscience

Download or read book An Introductory Course in Computational Neuroscience written by Paul Miller and published by MIT Press. This book was released on 2018-10-09 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Book Neuronal Dynamics

    Book Details:
  • Author : Wulfram Gerstner
  • Publisher : Cambridge University Press
  • Release : 2014-07-24
  • ISBN : 1107060834
  • Pages : 591 pages

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Book Dynamical Systems in Neuroscience

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Book Computational Neuroscience

Download or read book Computational Neuroscience written by Hanspeter A Mallot and published by Springer Science & Business Media. This book was released on 2013-05-23 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

Book Computational Neuroscience

Download or read book Computational Neuroscience written by Erik De Schutter and published by CRC Press. This book was released on 2000-11-22 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed primarily as an introduction to realistic modeling methods, Computational Neuroscience: Realistic Modeling for Experimentalists focuses on methodological approaches, selecting appropriate methods, and identifying potential pitfalls. The author addresses varying levels of complexity, from molecular interactions within single neurons to the

Book Nonlinear Dynamics in Computational Neuroscience

Download or read book Nonlinear Dynamics in Computational Neuroscience written by Fernando Corinto and published by Springer. This book was released on 2018-06-19 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an essential overview of computational neuroscience. It addresses a broad range of aspects, from physiology to nonlinear dynamical approaches to understanding neural computation, and from the simulation of brain circuits to the development of engineering devices and platforms for neuromorphic computation. Written by leading experts in such diverse fields as neuroscience, physics, psychology, neural engineering, cognitive science and applied mathematics, the book reflects the remarkable advances that have been made in the field of computational neuroscience, an emerging discipline devoted to the study of brain functions in terms of the information-processing properties of the structures forming the nervous system. The contents build on the workshop “Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT,” which was held in Torino, Italy in September 2015.

Book Biophysics of Computation

    Book Details:
  • Author : Christof Koch
  • Publisher : Oxford University Press
  • Release : 2004-10-28
  • ISBN : 0195181999
  • Pages : 587 pages

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Book Bayesian Brain

Download or read book Bayesian Brain written by Kenji Doya and published by MIT Press. This book was released on 2007 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.

Book Principles of Computational Modelling in Neuroscience

Download or read book Principles of Computational Modelling in Neuroscience written by David Sterratt and published by Cambridge University Press. This book was released on 2023-10-05 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.

Book Olfaction

    Book Details:
  • Author : Joel L. Davis
  • Publisher : MIT Press
  • Release : 1991
  • ISBN : 9780262041249
  • Pages : 348 pages

Download or read book Olfaction written by Joel L. Davis and published by MIT Press. This book was released on 1991 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational neuroscientists have recently turned to modeling olfactory structures because these are likely to have the same functional properties as currently popular network designs for perception and memory. This book provides a useful survey of current work on olfactory system circuitry, including connections of this system to brain structures involved in cognition and memory, and describes the computational models of olfactory processing that have been developed to date. Contributions cover empirical investigations of the neurobiology of the olfactory systems (anatomy, physiology, synaptic plasticity, behavioral physiology) as well as the application of computer models to understanding these systems. Fundamental issues in olfactory processing by the nervous systems such as experimental strategies in the study of olfaction, stages of odor processing, and critical questions in sensory coding are considered across empirical/applied boundaries and throughout the contributions. ContributorsI. Fundamental Anatomy, Physiology, and Plasticity of the Olfactory System, Gordon M. Shepherd. John S. Kauer, S. R. Neff, Kathryn A. Hamilton, and Angel R. Cinelli. Kevin L. Ketchum, Lewis B. Haberly. Joseph L. Price, S. Thomas Carmichael, Ken M. Carnes, Marie Christine Clugnet, Masaru Kuroda, and James P. Ray. Michael Leon, Donald A. Wilson, and Kathleen M. Guthrie. Gary Lynch and Richard Granger. Howard Eichenbaum, Tim Otto, Cynthia Wible, and Jean Piper. - II. Developments in Computational Models of the Olfactory System, DeLiang Wang, Joachim Buhmann, and Christoph von der Marlsburg. Walter Freeman. Richard Granger, Ursula Staubi, José Ambrose-Ingersoll, and Gary Lynch. James M. Bower. Dan Hammerstrom and Eric Means.

Book From Neuron to Cognition via Computational Neuroscience

Download or read book From Neuron to Cognition via Computational Neuroscience written by Michael A. Arbib and published by MIT Press. This book was released on 2016-11-04 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Book Computational Neuroscience

Download or read book Computational Neuroscience written by Jianfeng Feng and published by CRC Press. This book was released on 2003-10-20 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does the brain work? After a century of research, we still lack a coherent view of how neurons process signals and control our activities. But as the field of computational neuroscience continues to evolve, we find that it provides a theoretical foundation and a set of technological approaches that can significantly enhance our understanding.

Book Computational Neuroscience for Advancing Artificial Intelligence  Models  Methods and Applications

Download or read book Computational Neuroscience for Advancing Artificial Intelligence Models Methods and Applications written by Alonso, Eduardo and published by IGI Global. This book was released on 2010-11-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--

Book Introduction To The Theory Of Neural Computation

Download or read book Introduction To The Theory Of Neural Computation written by John A. Hertz and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.