Download or read book Teaching Science in Elementary and Middle School written by Cory A. Buxton and published by SAGE Publications. This book was released on 2010-07-08 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical methods text that prepares teachers to engage their students in rich science learning experiences Featuring an increased emphasis on the way today′s changing science and technology is shaping our culture, this Second Edition of Teaching Science in Elementary and Middle School provides pre- and in-service teachers with an introduction to basic science concepts and methods of science instruction, as well as practical strategies for the classroom. Throughout the book, the authors help readers learn to think like scientists and better understand the role of science in our day-to-day lives and in the history of Western culture. Part II features 100 key experiments that demonstrate the connection between content knowledge and effective inquiry-based pedagogy. The Second Edition is updated throughout and includes new coverage of applying multiple intelligences to the teaching and learning of science, creating safe spaces for scientific experimentation, using today′s rapidly changing online technologies, and more. Valuable Instructor and Student resources: The password-protected Instructor Teaching Site includes video clips that illustrate selected experiments, PowerPoint® lecture slides, Electronic Test Bank, Teaching guides, and Web resources. The open-access Student Study Site includes tools to help students prepare for exams and succeed in the course: video clips that illustrate selected experiments, chapter summaries, flash cards, quizzes, helpful student guides links to state standards, licensure exams and PRAXIS resources, and Learning from SAGE Journal Articles.
Download or read book Ambitious Science Teaching written by Mark Windschitl and published by Harvard Education Press. This book was released on 2020-08-05 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
Download or read book Teaching Science in Elementary and Middle School written by Joseph S. Krajcik and published by Routledge. This book was released on 2014-01-23 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaching Science in Elementary and Middle School offers in-depth information about the fundamental features of project-based science and strategies for implementing the approach. In project-based science classrooms students investigate, use technology, develop artifacts, collaborate, and make products to show what they have learned. Paralleling what scientists do, project-based science represents the essence of inquiry and the nature of science. Because project-based science is a method aligned with what is known about how to help all children learn science, it not only helps students learn science more thoroughly and deeply, it also helps them experience the joy of doing science. Project-based science embodies the principles in A Framework for K-12 Science Education and the Next Generation Science Standards. Blending principles of learning and motivation with practical teaching ideas, this text shows how project-based learning is related to ideas in the Framework and provides concrete strategies for meeting its goals. Features include long-term, interdisciplinary, student-centered lessons; scenarios; learning activities, and "Connecting to Framework for K–12 Science Education" textboxes. More concise than previous editions, the Fourth Edition offers a wealth of supplementary material on a new Companion Website, including many videos showing a teacher and class in a project environment.
Download or read book Science Teachers Learning written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-01-15 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.
Download or read book Taking Science to School written by National Research Council and published by National Academies Press. This book was released on 2007-04-16 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Download or read book Teaching Science for Understanding written by Joel J. Mintzes and published by Academic Press. This book was released on 2005-02-21 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaching Science for Understanding
Download or read book Visible Learning for Science Grades K 12 written by John Almarode and published by Corwin Press. This book was released on 2018-02-15 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.
Download or read book Designing Effective Science Instruction written by Anne Tweed and published by NSTA Press. This book was released on 2009 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Framework for K 12 Science Education written by National Research Council and published by National Academies Press. This book was released on 2012-02-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Download or read book Teaching Science in Secondary Schools written by Sandra Amos and published by Routledge. This book was released on 2013-10-11 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A companion to Aspects of Teaching Secondary Science, the first section of this reader provides an overview of the key issues, discussing the nature of science and its role in the school curriculum. The second section goes on to examine critically the ways in which science is reflected in the school curriculum, while the third section discusses recent curriculum initiatives and developments. Turning the focus from what is taught on to who is taught, section four shows that students are very much active learners in the classroom, making sense of their experiences and constructing their own meanings. The final section covers the role of research in science education, giving examples of research papers and considering how productive collaboration between teachers and researchers can impact upon the effectiveness of classroom practice.
Download or read book Selecting Instructional Materials written by National Research Council and published by National Academies Press. This book was released on 1999-11-17 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The National Science Education Standards set broad content goals for teaching grades K-12. For science teaching programs to achieve these goalsâ€"indeed, for science teaching to be most effectiveâ€"teachers and students need textbooks, lab kits, videos, and other materials that are clear, accurate, and help students achieve the goals set by the standards. Selecting Instructional Materials provides a rigorously field-tested procedure to help education decisionmakers evaluate and choose materials for the science classroom. The recommended procedure is unique, adaptable to local needs, and realistic given the time and money limitations typical to school districts. This volume includes a guide outlining the entire process for school district facilitators, and provides review instruments for each step. It critically reviews the current selection process for science teaching materialsâ€"in the 20 states where the state board of education sets forth a recommended list and in the 30 states where materials are selected entirely by local decisionmakers. Selecting Instructional Materials explores how purchasing decisions are influenced by parent attitudes, political considerations, and the marketing skills of those who produce and sell science teaching materials. It will be indispensable to state and local education decisionmakers, science program administrators and teachers, and science education advocates.
Download or read book Understanding and Developing Science Teachers Pedagogical Content Knowledge written by J. John Loughran and published by BRILL. This book was released on 2006-01-01 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been a growing interest in the notion of a scholarship of teaching. Such scholarship is displayed through a teacher’s grasp of, and response to, the relationships between knowledge of content, teaching and learning in ways that attest to practice as being complex and interwoven. Yet attempting to capture teachers’ professional knowledge is difficult because the critical links between practice and knowledge, for many teachers, is tacit. Pedagogical Content Knowledge (PCK) offers one way of capturing, articulating and portraying an aspect of the scholarship of teaching and, in this case, the scholarship of science teaching. The research underpinning the approach developed by Loughran, Berry and Mulhall offers access to the development of the professional knowledge of science teaching in a form that offers new ways of sharing and disseminating this knowledge. Through this Resource Folio approach (comprising CoRe and PaP-eRs) a recognition of the value of the specialist knowledge and skills of science teaching is not only highlighted, but also enhanced. The CoRe and PaP-eRs methodology offers an exciting new way of capturing and portraying science teachers’ pedagogical content knowledge so that it might be better understood and valued within the profession. This book is a concrete example of the nature of scholarship in science teaching that is meaningful, useful and immediately applicable in the work of all science teachers (preservice, in-service and science teacher educators). It is an excellent resource for science teachers as well as a guiding text for teacher education.
Download or read book Elementary and Secondary Education for Science and Engineering written by and published by . This book was released on 1988 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Art of Teaching Science written by Jack Hassard and published by Routledge. This book was released on 2013-07-04 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Art of Teaching Science emphasizes a humanistic, experiential, and constructivist approach to teaching and learning, and integrates a wide variety of pedagogical tools. Becoming a science teacher is a creative process, and this innovative textbook encourages students to construct ideas about science teaching through their interactions with peers, mentors, and instructors, and through hands-on, minds-on activities designed to foster a collaborative, thoughtful learning environment. This second edition retains key features such as inquiry-based activities and case studies throughout, while simultaneously adding new material on the impact of standardized testing on inquiry-based science, and explicit links to science teaching standards. Also included are expanded resources like a comprehensive website, a streamlined format and updated content, making the experiential tools in the book even more useful for both pre- and in-service science teachers. Special Features: Each chapter is organized into two sections: one that focuses on content and theme; and one that contains a variety of strategies for extending chapter concepts outside the classroom Case studies open each chapter to highlight real-world scenarios and to connect theory to teaching practice Contains 33 Inquiry Activities that provide opportunities to explore the dimensions of science teaching and increase professional expertise Problems and Extensions, On the Web Resources and Readings guide students to further critical investigation of important concepts and topics. An extensive companion website includes even more student and instructor resources, such as interviews with practicing science teachers, articles from the literature, chapter PowerPoint slides, syllabus helpers, additional case studies, activities, and more. Visit http://www.routledge.com/textbooks/9780415965286 to access this additional material.
Download or read book How Students Learn written by National Research Council and published by National Academies Press. This book was released on 2005-01-23 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.
Download or read book Sensemaking in Elementary Science written by Elizabeth A. Davis and published by Routledge. This book was released on 2019-11-07 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grounded in empirical research, this book offers concrete pathways to redirect attention away from activity-oriented and vocabulary-centered elementary science teaching and towards elementary science teaching that privileges sensemaking. Outlining a clear vision for this shift using empirically-grounded tools, pedagogies and practices to support teacher learning and development, this edited volume reveals how teachers can best engage in teaching that supports meaningful learning and understanding in elementary science classrooms. Divided into three sections, this book demonstrates the skills, knowledge bases and research-driven practices necessary to make a fundamental shift towards a focus on students' ideas and reasoning and covers topics such as: An introduction to sensemaking in elementary science Positioning students at the center of sensemaking Planning and enacting investigation-based science discussions Designing a practice-based elementary teacher education program Reflections on science teacher education and professional development for reform-based elementary science In line with current reform efforts, including the Next Generation Science Standards (NGSS), Sensemaking in Elementary Science is the perfect addition for graduate students and researchers in science education, elementary education and STEM education, who are looking to explore effective practice, approaches and development within the elementary science classroom.
Download or read book Call to Action for Science Education written by National Academies of Sciences Engineering and Medicine and published by . This book was released on 2021-08-13 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific thinking and understanding are essential for all people navigating the world, not just for scientists and other science, technology, engineering and mathematics (STEM) professionals. Knowledge of science and the practice of scientific thinking are essential components of a fully functioning democracy. Science is also crucial for the future STEM workforce and the pursuit of living wage jobs. Yet, science education is not the national priority it needs to be, and states and local communities are not yet delivering high quality, rigorous learning experiences in equal measure to all students from elementary school through higher education. Call to Action for Science Education: Building Opportunity for the Future articulates a vision for high quality science education, describes the gaps in opportunity that currently exist for many students, and outlines key priorities that need to be addressed in order to advance better, more equitable science education across grades K-16. This report makes recommendations for state and federal policy makers on ways to support equitable, productive pathways for all students to thrive and have opportunities to pursue careers that build on scientific skills and concepts. Call to Action for Science Education challenges the policy-making community at state and federal levels to acknowledge the importance of science, make science education a core national priority, and empower and give local communities the resources they must have to deliver a better, more equitable science education.