Download or read book Synthetic Data for Deep Learning written by Sergey I. Nikolenko and published by Springer Nature. This book was released on 2021-06-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.
Download or read book Annals of Scientific Society for Assembly Handling and Industrial Robotics 2021 written by Thorsten Schüppstuhl and published by Springer Nature. This book was released on 2021 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Download or read book Handbook of Digital Face Manipulation and Detection written by Christian Rathgeb and published by Springer Nature. This book was released on 2022-01-31 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area.
Download or read book Generative Adversarial Networks for Image to Image Translation written by Arun Solanki and published by Academic Press. This book was released on 2021-06-22 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications
Download or read book Generative Adversarial Networks for Image Generation written by Xudong Mao and published by Springer Nature. This book was released on 2021-03-21 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative adversarial networks (GANs) were introduced by Ian Goodfellow and his co-authors including Yoshua Bengio in 2014, and were to referred by Yann Lecun (Facebook’s AI research director) as “the most interesting idea in the last 10 years in ML.” GANs’ potential is huge, because they can learn to mimic any distribution of data, which means they can be taught to create worlds similar to our own in any domain: images, music, speech, prose. They are robot artists in a sense, and their output is remarkable – poignant even. In 2018, Christie’s sold a portrait that had been generated by a GAN for $432,000. Although image generation has been challenging, GAN image generation has proved to be very successful and impressive. However, there are two remaining challenges for GAN image generation: the quality of the generated image and the training stability. This book first provides an overview of GANs, and then discusses the task of image generation and the details of GAN image generation. It also investigates a number of approaches to address the two remaining challenges for GAN image generation. Additionally, it explores three promising applications of GANs, including image-to-image translation, unsupervised domain adaptation and GANs for security. This book appeals to students and researchers who are interested in GANs, image generation and general machine learning and computer vision.
Download or read book Understanding Synthetic Aperture Radar Images written by Chris Oliver and published by SciTech Publishing. This book was released on 2004 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical reference shows SAR system designers and remote sensing specialists how to produce higher quality SAR images using data-driven algorithms, and apply powerful new techniques to measure and analyze SAR image content.
Download or read book Processing of Synthetic Aperture Radar SAR Images written by Henri Maître and published by John Wiley & Sons. This book was released on 2013-05-10 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthetic aperture radar provides broad-area imaging at high resolutions, which is used in applications such as environmental monitoring, earth-resource mapping, and military systems. This book presents the tools required for the digital processing of synthetic aperture radar images. They are of three types: (a) the elements of physics, (b) mathematical models and (c) image processing methods adapted to particular applications.
Download or read book Image Understanding written by and published by . This book was released on with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Image Analysis written by Rikke Gade and published by Springer Nature. This book was released on 2023-04-26 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set (LNCS 13885-13886) constitutes the refereed proceedings of the 23rd Scandinavian Conference on Image Analysis, SCIA 2023, held in Lapland, Finland, in April 2023. The 67 revised papers presented were carefully reviewed and selected from 108 submissions. The contributions are structured in topical sections on datasets and evaluation; action and behaviour recognition; image and video processing, analysis, and understanding; detection, recognition, classification, and localization in 2D and/or 3D; machine learning and deep learning; segmentation, grouping, and shape; vision for robotics and autonomous vehicles; biometrics, faces, body gestures and pose; 3D vision from multiview and other sensors; vision applications and systems.
Download or read book Hands On Image Generation with TensorFlow written by Soon Yau Cheong and published by Packt Publishing Ltd. This book was released on 2020-12-24 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch Key FeaturesUnderstand the different architectures for image generation, including autoencoders and GANsBuild models that can edit an image of your face, turn photos into paintings, and generate photorealistic imagesDiscover how you can build deep neural networks with advanced TensorFlow 2.x featuresBook Description The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently. What you will learnTrain on face datasets and use them to explore latent spaces for editing new facesGet to grips with swapping faces with deepfakesPerform style transfer to convert a photo into a paintingBuild and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translationUse iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic imagesBecome well versed in attention generative models such as SAGAN and BigGANGenerate high-resolution photos with Progressive GAN and StyleGANWho this book is for The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You’ll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.
Download or read book Image Analysis and Recognition written by Aurélio Campilho and published by Springer. This book was released on 2018-06-19 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the 15th International Conference on Image Analysis and Recognition, ICIAR 2018, held in Póvoa de Varzim, Portugal, in June 2018. The 91 full papers presented together with 15 short papers were carefully reviewed and selected from 179 submissions. The papers are organized in the following topical sections: Enhancement, Restoration and Reconstruction, Image Segmentation, Detection, Classication and Recognition, Indexing and Retrieval, Computer Vision, Activity Recognition, Traffic and Surveillance, Applications, Biomedical Image Analysis, Diagnosis and Screening of Ophthalmic Diseases, and Challenge on Breast Cancer Histology Images.
Download or read book Advances in Deep Generative Models for Medical Artificial Intelligence written by Hazrat Ali and published by Springer Nature. This book was released on 2023-12-16 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models. This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.
Download or read book Artificial Intelligence and Cognitive Science written by Luca Longo and published by Springer Nature. This book was released on 2023-02-22 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes selected papers presented during the 30th Irish Conference on Artificial Intelligence and Cognitive Science, held in Munster, Ireland, in December 2022. The 41 presented papers were thoroughly reviewed and selected from the 102 submissions. They are organized in topical sections on machine learning, deep learning and applications; responsible and trustworthy artificial intelligence; natural language processing and recommender systems; knowledge representation, reasoning, optimisation and intelligent applications.
Download or read book Integrated Imaging and Vision Techniques for Industrial Inspection written by Zheng Liu and published by Springer. This book was released on 2015-09-24 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering text/reference presents a detailed focus on the use of machine vision techniques in industrial inspection applications. An internationally renowned selection of experts provide insights on a range of inspection tasks, drawn from their cutting-edge work in academia and industry, covering practical issues of vision system integration for real-world applications. Topics and features: presents a comprehensive review of state-of-the-art hardware and software tools for machine vision, and the evolution of algorithms for industrial inspection; includes in-depth descriptions of advanced inspection methodologies and machine vision technologies for specific needs; discusses the latest developments and future trends in imaging and vision techniques for industrial inspection tasks; provides a focus on imaging and vision system integration, implementation, and optimization; describes the pitfalls and barriers to developing successful inspection systems for smooth and efficient manufacturing process.
Download or read book Image and Graphics written by Yuxin Peng and published by Springer Nature. This book was released on 2021-09-30 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNCS 12888, 12898, and 12890 constitutes the refereed conference proceedings of the 11th International Conference on Image and Graphics, ICIG 2021, held in Haikou, China, in August 2021.* The 198 full papers presented were selected from 421 submissions and focus on advances of theory, techniques and algorithms as well as innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. *The conference was postponed due to the COVID-19 pandemic.
Download or read book Weather Analysis and Forecasting written by Christo Georgiev and published by Academic Press. This book was released on 2016-06-15 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weather Analysis and Forecasting: Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis, Second Edition, is a step-by-step essential training manual for forecasters in meteorological services worldwide, and a valuable text for graduate students in atmospheric physics and satellite meteorology. In this practical guide, P. Santurette, C.G. Georgiev, and K. Maynard show how to interpret water vapor patterns in terms of dynamical processes in the atmosphere and their relation to diagnostics available from numerical weather prediction models. In particular, they concentrate on the close relationship between satellite imagery and the potential vorticity fields in the upper troposphere and lower stratosphere. These applications are illustrated with color images based on real meteorological situations over mid-latitudes, subtropical and tropical areas. - Presents interpretation of the water vapor channels 6.2 and 7.3μm as well as advances based on satellite data to improve understanding of atmospheric thermodynamics - Improves by new schemes the understanding of upper-level dynamics, midlatitudes cyclogenesis and fronts over various geographical areas - Provides analysis of deep convective phenomena to better understand the development of strong thunderstorms and to improve forecasting of severe convective events - Includes efficient operational forecasting methods for interpretation of data from NWP models - Offers information on satellite water vapor images and potential vorticity fields to analyse and forecast convective phenomena and thunderstorms
Download or read book The Orientation of Future Cinema written by Bruce Isaacs and published by Bloomsbury Publishing USA. This book was released on 2013-02-14 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the fate of cinema in an age of new technologies, new aesthetic styles, new modes of cultural production and consumption? What becomes of cinema and a century-long history of the moving image when the theatre is outmoded as a social and aesthetic space, as celluloid gives over to digital technology, as the art-house and multiplex are overtaken by a proliferation of home entertainment systems? The Orientation of Future Cinema offers an ambitious and compelling argument for the continued life of cinema as image, narrative and experience. Commencing with Lumière's Arrival of a Train at a Station, Bruce Isaacs confronts the threat of contemporary digital technologies and processes by returning to cinema's complex history as a technological and industrial phenomenon. The technology of moving images has profoundly changed; and yet cinema materialises ever more forcefully in digital capture and augmentation, 3-D perception and affect, High Frame Rate cinema, and the evolution of spectacle as the dominant aesthetic mode in contemporary studio production.