Download or read book Non equilibrium Statistical Mechanics and Turbulence written by John Cardy and published by Cambridge University Press. This book was released on 2008-12-11 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.
Download or read book The Statistical Dynamics of Turbulence written by Jovan Jovanovic and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This short but complicated book is very demanding of any reader. The scope and style employed preserve the nature of its subject: the turbulence phe nomena in gas and liquid flows which are believed to occur at sufficiently high Reynolds numbers. Since at first glance the field of interest is chaotic, time-dependent and three-dimensional, spread over a wide range of scales, sta tistical treatment is convenient rather than a description of fine details which are not of importance in the first place. When coupled to the basic conserva tion laws of fluid flow, such treatment, however, leads to an unclosed system of equations: a consequence termed, in the scientific community, the closure problem. This is the central and still unresolved issue of turbulence which emphasizes its chief peculiarity: our inability to do reliable predictions even on the global flow behavior. The book attempts to cope with this difficult task by introducing promising mathematical tools which permit an insight into the basic mechanisms involved. The prime objective is to shed enough light, but not necessarily the entire truth, on the turbulence closure problem. For many applications it is sufficient to know the direction in which to go and what to do in order to arrive at a fast and practical solution at minimum cost. The book is not written for easy and attractive reading.
Download or read book Statistical Fluid Mechanics Volume II written by A. S. Monin and published by Dover Publications. This book was released on 2007-06-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book." — Science Written by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulence, the behavior of thermally stratified media, and diffusion. Volume Two continues and concludes the presentation. Topics include spectral functions, homogeneous fields, isotropic random fields, isotropic turbulence, self-preservation hypotheses, spectral energy transfer, the Millionshchikov hypothesis, acceleration fields, equations for higher moments and the closure problem, and turbulence in a compressible fluid. Additional subjects include general concepts of the local structure of turbulence at high Reynolds numbers, the theory of fully developed turbulence, the propagation of electromagnetic and acoustic waves through a turbulent medium, and the twinkling of stars. The book closes with a discussion of the functional formulation of the problem of turbulence, presenting the equations for the characteristic functional and methods for their solution.
Download or read book Homogeneous Turbulence Dynamics written by Pierre Sagaut and published by Springer. This book was released on 2018-03-23 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.
Download or read book Statistical Theory and Modeling for Turbulent Flows written by P. A. Durbin and published by John Wiley & Sons. This book was released on 2011-06-28 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.
Download or read book Statistical Mechanics of Turbulent Flows written by Stefan Heinz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .
Download or read book Statistical Turbulence Modelling For Fluid Dynamics Demystified An Introductory Text For Graduate Engineering Students written by Michael Leschziner and published by World Scientific. This book was released on 2015-08-20 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics — Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.
Download or read book Statistical Theory and Modeling for Turbulent Flows written by P. A. Durbin and published by Wiley-Blackwell. This book was released on 2001-03-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
Download or read book An Informal Introduction to Turbulence written by A. Tsinober and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N's 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.
Download or read book Dynamical Systems Approach to Turbulence written by Tomas Bohr and published by Cambridge University Press. This book was released on 2005-08-22 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, turbulence has evolved into a very active field of theoretical physics. The origin of this development is the approach to turbulence from the point of view of deterministic dynamical systems, and this book shows how concepts developed for low dimensional chaotic systems are applied to turbulent states. This book centers around a number of important simplified models for turbulent behavior in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems. The theory of fractals and multifractals now plays a major role in turbulence research, and turbulent states are being studied as important dynamical states of matter occurring also in systems outside the realm of hydrodynamics. The book contains simplified models of turbulent behavior, notably shell models, coupled map lattices, amplitude equations and interface models.
Download or read book Theories of Turbulence written by Martin Oberlack and published by Springer. This book was released on 2014-05-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Download or read book The Mathematical Theory of Turbulence written by M.M. Stanisic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: "I do not think at all that I am able to present here any procedure of investiga tion that was not perceived long ago by all men of talent; and I do not promise at all that you can find here anything_ quite new of this kind. But I shall take pains to state in clear words the pules and ways of investigation which are followed by ahle men, who in most cases are not even conscious of foZlow ing them. Although I am free from illusion that I shall fully succeed even in doing this, I still hope that the little that is present here may please some people and have some application afterwards. " Bernard Bolzano (Wissenschaftslehre, 1929) The following book results from aseries of lectures on the mathematical theory of turbulence delivered by the author at the Purdue University School of Aeronautics and Astronautics during the past several years, and represents, in fact, a comprehensive account of the author's work with his graduate students in this field. It was my aim in writing this book to give to engineers and scientists a mathematical feeling for a subject, which because of its nonlinear character has resisted mathematical analysis for many years. On account vii i of its refractory nature this subject was categorized as one of seven "elementary catastrophes". The material presented here is designed for a first graduate course in turbulence. The complete course has been taught in one semester.
Download or read book Turbulence in Fluids written by Marcel Lesieur and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis
Download or read book The Turbulence Problem written by Michael Eckert and published by Springer Nature. This book was released on 2019-10-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the road toward a history of turbulence, this book focuses on what the actors in this research field have identified as the “turbulence problem”. Turbulent flow rose to prominence as one of the most persistent challenges in science. At different times and in different social and disciplinary settings, the nature of this problem has changed in response to changing research agendas. This book does not seek to provide a comprehensive account, but instead an exemplary exposition on the environments in which problems become the subjects of research agendas, with particular emphasis on the first half of the 20th century.
Download or read book A First Course in Turbulence written by Henk Tennekes and published by MIT Press. This book was released on 2018-04-27 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.
Download or read book Turbulent Flows written by Stephen B. Pope and published by Cambridge University Press. This book was released on 2000-08-10 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text on turbulent flows, an important topic in fluid dynamics. It is up-to-date, comprehensive, designed for teaching, and is based on a course taught by the author at Cornell University for a number of years. The book consists of two parts followed by a number of appendices. Part I provides a general introduction to turbulent flows, how they behave, how they can be described quantitatively, and the fundamental physical processes involved. Part II is concerned with different approaches for modelling or simulating turbulent flows. The necessary mathematical techniques are presented in the appendices. This book is primarily intended as a graduate level text in turbulent flows for engineering students, but it may also be valuable to students in applied mathematics, physics, oceanography and atmospheric sciences, as well as researchers and practising engineers.