EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Seismic Cycle

    Book Details:
  • Author : Frederique Rolandone
  • Publisher : John Wiley & Sons
  • Release : 2022-09-16
  • ISBN : 1394173695
  • Pages : 372 pages

Download or read book The Seismic Cycle written by Frederique Rolandone and published by John Wiley & Sons. This book was released on 2022-09-16 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the seismic cycle has many applications, from the study of faulting to the estimation of seismic hazards. It must be considered at different timescales, from that of an earthquake, the co-seismic phase (a few seconds), the post seismic phase (from months to dozens of years) and the inter-seismic phase (from dozens to hundreds of years), up to cumulative deformations due to several seismic cycles (from a few thousand to hundreds of thousands of years). The Seismic Cycle uses many different tools to approach its subject matter, from short-term geodesic, such as GPS and InSAR, and seismological observations to long-term tectonic, geomorphological, morphotectonic observations, including those related to paleoseismology. Various modeling tools such as analog experiences, experimental approaches and mechanical modeling are also examined. Different tectonic contexts are considered when engaging with the seismic cycle, from continental strike-slip faults to subduction zones such as the Chilean, Mexican and Ecuadorian zones. The interactions between the seismic cycle and magmatism in rifts and interactions with erosion in mountain chains are also discussed.

Book The Seismic Cycle

    Book Details:
  • Author : Frederique Rolandone
  • Publisher : John Wiley & Sons
  • Release : 2022-10-11
  • ISBN : 1789450381
  • Pages : 372 pages

Download or read book The Seismic Cycle written by Frederique Rolandone and published by John Wiley & Sons. This book was released on 2022-10-11 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the seismic cycle has many applications, from the study of faulting to the estimation of seismic hazards. It must be considered at different timescales, from that of an earthquake, the co-seismic phase (a few seconds), the post seismic phase (from months to dozens of years) and the inter-seismic phase (from dozens to hundreds of years), up to cumulative deformations due to several seismic cycles (from a few thousand to hundreds of thousands of years). The Seismic Cycle uses many different tools to approach its subject matter, from short-term geodesic, such as GPS and InSAR, and seismological observations to long-term tectonic, geomorphological, morphotectonic observations, including those related to paleoseismology. Various modeling tools such as analog experiences, experimental approaches and mechanical modeling are also examined. Different tectonic contexts are considered when engaging with the seismic cycle, from continental strike-slip faults to subduction zones such as the Chilean, Mexican and Ecuadorian zones. The interactions between the seismic cycle and magmatism in rifts and interactions with erosion in mountain chains are also discussed.

Book Earthquake Prediction

    Book Details:
  • Author : David W. Simpson
  • Publisher : American Geophysical Union
  • Release : 1981
  • ISBN :
  • Pages : 698 pages

Download or read book Earthquake Prediction written by David W. Simpson and published by American Geophysical Union. This book was released on 1981 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published by the American Geophysical Union as part of the Maurice Ewing Series, Volume 4. From May 12 to May 16, 1980, eighty-eight scientists from eleven countries attended a Symposium on Earthquake Prediction at Mohonk Mountain House, Mohonk, New York. This was the third in a biennial series honoring Maurice Ewing, first director of Lamont-Doherty Geological Observatory. The Symposium was one of several events that were held in 1980 to celebrate the 100th anniversary of the Graduate School of Arts and Sciences at Columbia University. The two earlier Ewing Symposia, on island arcs and deep sea drilling, reflected Ewing's lifelong interest in the structure and evolution of the ocean floor. In the Third Ewing Symposium we touch another area—earthquake seismology—that played an important part in Ewing's career. Work on surface waves and long-period seismology under Ewing's direction during the 1950's and 1960's, along with his exploration of the earth beneath the oceans, provided much of the framework on which current ideas on earthquake generation and plate tectonics are based.

Book Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle

Download or read book Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle written by Kurt J. Marfurt and published by SEG Books. This book was released on 2018-01-31 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful attributes capture and quantify key components of the seismic amplitude and texture for subsequent integration with well log, microseismic, and production data through either interactive visualization or machine learning. Although both approaches can accelerate and facilitate the interpretation process, they can by no means replace the interpreter. Interpreter “grayware” includes the incorporation and validation of depositional, diagenetic, and tectonic deformation models, the integration of rock physics systematics, and the recognition of unanticipated opportunities and hazards. This book is written to accompany and complement the 2018 SEG Distinguished Instructor Short Course that provides a rapid overview of how 3D seismic attributes provide a framework for data integration over the life of the oil and gas field. Key concepts are illustrated by example, showing modern workflows based on interactive interpretation and display as well as those aided by machine learning.

Book Experimental Simulation of the Seismic Cycle in Fault Damage Zones

Download or read book Experimental Simulation of the Seismic Cycle in Fault Damage Zones written by Frans Aben and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquakes along large crustal scale faults are a huge hazard threatening large populations. The behavior of such faults is influenced by the fault damage zone that surrounds the fault core. Fracture damage in such fault damage zones influences each stage of the seismic cycle. The damage zone influences rupture mechanics, behaves as a fluid conduit to release pressurized fluids at depth or to give access to reactive fluids to alter the fault core, and facilitates strain during post- and interseismic periods. Also, it acts as an energy sink for earthquake energy. Here, laboratory experiments were performed to come to a better understanding of how this fracture damage is formed during coseismic transient loading, what this fracture damage can tell us about the earthquake rupture conditions along large faults, and how fracture damage is annihilated over time.First, coseismic damage generation, and specifically the formation of pulverized fault damage zone rock, is reviewed. The potential of these pulverized rocks as a coseismic marker for rupture mechanisms is discussed. Although these rocks are promising in that aspect, several open questions remain.One of these open questions is if the transient loading conditions needed for pulverization can be reduced by progressively damaging during many seismic events. The successive high strain rate loadings performed on quartz monzonites using a split Hopkinson pressure bar reveal that indeed the pulverization strain rate threshold is reduced by at least 50%.Another open question is why pulverized rocks are almost always observed in crystalline lithologies and not in more porous rock, even when crystalline and porous rocks are juxtaposed by a fault. To study this observation, high strain rate experiments were performed on porous Rothbach sandstone. The results show that pervasive pulverization below the grain scale, such as observed in crystalline rock, does not occur in the sandstone samples for the explored strain rate range (60-150 s-1). Damage is mainly occurs at a scale superior to that of the scale of the grains, with intragranular deformation occurring only in weaker regions where compaction bands are formed. The competition between inter- and intragranular damage during dynamic loading is explained with the geometric parameters of the rock in combination with two classic micromechanical models: the Hertzian contact model and the pore-emanated crack model. In conclusion, the observed microstructures can form in both quasi-static and dynamic loading regimes. Therefore caution is advised when interpreting the mechanism responsible for near-fault damage in sedimentary rock near the surface. Moreover, the results suggest that different responses of different lithologies to transient loading are responsible for sub-surface damage zone asymmetry.Finally, post-seismic annihilation of coseismic damage by calcite assisted fracture sealing has been studied in experiments, so that the coupling between strengthening and permeability of the fracture network could be studied. A sample-scale fracture network was introduced in quartz monzonite samples, followed exposure to upper crustal conditions and percolation of a fluid saturated with calcite for several months. A large recovery of up to 50% of the initial P-wave velocity drop has been observed after the sealing experiment. In contrast, the permeability remained more or less constant for the duration of the experiment. This lack of coupling between strengthening and permeability in the first stages of sealing is explained by X-ray computed micro tomography. Incipient sealing in the fracture spaces occurs downstream of flow barriers, thus in regions that do not affect the main fluid flow pathways. The decoupling of strength recovery and permeability suggests that shallow fault damage zones can remain fluid conduits for years after a seismic event, leading to significant transformations of the core and the damage zone of faults with time.

Book A Review of Recently Active Faults in Taiwan

Download or read book A Review of Recently Active Faults in Taiwan written by Manuel G. Bonilla and published by . This book was released on 1975 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Hazard Analysis

Download or read book Earthquake Hazard Analysis written by Leon Reiter and published by . This book was released on 1990 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: -- Science

Book The Mechanics of Earthquakes and Faulting

Download or read book The Mechanics of Earthquakes and Faulting written by Christopher H. Scholz and published by Cambridge University Press. This book was released on 2002-05-02 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of earthquakes and faulting processes has developed significantly since publication of the successful first edition of this book in 1990. This revised edition, first published in 2002, was therefore thoroughly up-dated whilst maintaining and developing the two major themes of the first edition. The first of these themes is the connection between fault and earthquake mechanics, including fault scaling laws, the nature of fault populations, and how these result from the processes of fault growth and interaction. The second major theme is the central role of the rate-state friction laws in earthquake mechanics, which provide a unifying framework within which a wide range of faulting phenomena can be interpreted. With the inclusion of two chapters explaining brittle fracture and rock friction from first principles, this book is written at a level which will appeal to graduate students and research scientists in the fields of seismology, physics, geology, geodesy and rock mechanics.

Book Deformation Across the Seismic Cycle in Tectonically Active Regions

Download or read book Deformation Across the Seismic Cycle in Tectonically Active Regions written by William Douglas Barnhart and published by . This book was released on 2013 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: I mages of surface displacements in response to tectonic forces can provide independent, spatially dense observations that assist in understanding sub-surface processes. When considered independently or augmented with more traditional observations of active tectonics such as seismicity and ground mapping, these measurements provide constraints o n spatially and temporally variable fault behavior across the seismic cycle. Models of fault behavior inferred from these observations in turn allow us to address topics in geologic hazards assessment, the long- a nd short - term character of strain in defor ming regions, and the interactions between faults throughout the crust. In this dissertation, I use remotely sensed observations of ground displacements from interferometric synthetic aperture radar (InSAR) t o approach several problems related to earthquak e and aseismic fault slip. I establish image p rocessing and inverse methods for better detailing subsurface fault slip and apply these to the 2 010 - 2011 Canterbury, New Zealand sequence. Then, I focus on the active tectonics of the Zagros Mountains in south ern Iran. There, I show through orogen -wide InSAR time series analysis that active strain is accommodated across the width of the mountain belt. I also use a combination of InSAR, local seismicity, and structural modeling to demonstrate that strain is v ert ically partitioned within the Zagros fold-and - thrust belt, with earthquakes controlling deformation in the underlying basement while the overlying sedimentary section shortens in t ransient, earthquake- triggered aseismic slip events. In certain examples, th ese aseismic slip events directly contribute to the growth of fault -bend folds. I use these inferences to explore a p reviously noted discrepancy between observed shortening and that which is expected from k nown earthquakes. I show that the earthquakes and short - term aseismic slip cannot account f or this discrepancy, and that additional deformation mechanisms must be active.

Book Earthquake and Volcano Deformation

Download or read book Earthquake and Volcano Deformation written by Paul Segall and published by Princeton University Press. This book was released on 2010-01-04 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake and Volcano Deformation is the first textbook to present the mechanical models of earthquake and volcanic processes, emphasizing earth-surface deformations that can be compared with observations from Global Positioning System (GPS) receivers, Interferometric Radar (InSAR), and borehole strain- and tiltmeters. Paul Segall provides the physical and mathematical fundamentals for the models used to interpret deformation measurements near active faults and volcanic centers. Segall highlights analytical methods of continuum mechanics applied to problems of active crustal deformation. Topics include elastic dislocation theory in homogeneous and layered half-spaces, crack models of faults and planar intrusions, elastic fields due to pressurized spherical and ellipsoidal magma chambers, time-dependent deformation resulting from faulting in an elastic layer overlying a viscoelastic half-space and related earthquake cycle models, poroelastic effects due to faulting and magma chamber inflation in a fluid-saturated crust, and the effects of gravity on deformation. He also explains changes in the gravitational field due to faulting and magmatic intrusion, effects of irregular surface topography and earth curvature, and modern concepts in rate- and state-dependent fault friction. This textbook presents sample calculations and compares model predictions against field data from seismic and volcanic settings from around the world. Earthquake and Volcano Deformation requires working knowledge of stress and strain, and advanced calculus. It is appropriate for advanced undergraduates and graduate students in geophysics, geology, and engineering. Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Book Earthquake Processes  Physical Modelling  Numerical Simulation and Data Analysis Part II

Download or read book Earthquake Processes Physical Modelling Numerical Simulation and Data Analysis Part II written by Mitsuhiro Matsu'ura and published by Birkhäuser. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.

Book Cross Scale Modeling of Mountain Building and the Seismic Cycle  From Alps to Himalaya

Download or read book Cross Scale Modeling of Mountain Building and the Seismic Cycle From Alps to Himalaya written by Luca Dal Zilio and published by Springer. This book was released on 2019-09-03 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates a broad range of scientific disciplines, from geodynamics and tectonics to earthquake physics, geodesy and seismology. This holistic approach supports a detailed investigation of the deformation and seismicity associated with mountain building processes and fault activity in the Earth’s upper, brittle crust. New insights into these deformational processes on both earthquake cycle and geologic timescales are subsequently combined to improve our physical understanding of seismicity in mountain belts, which has a variety of potential applications in active tectonics studies and seismic hazard assessments.

Book The Earthquake Cycle of Strike slip Faults

Download or read book The Earthquake Cycle of Strike slip Faults written by Gina Marie Schmalzle and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An earthquake is a mechanism of stress release along plate boundaries due to relative motion between the Earth2s lithospheric blocks. The period in which stresses are accruing across the plate boundary is known as the interseismic portion of the earthquake cycle. This dissertation focuses on interseismic portion of the earthquake cycle to extract characteristics of fault, shear zone and rock properties. Global Positioning System (GPS) data are used to observe the pattern of deformation across two primarily strike-slip fault systems: the Carrizo Segment of the San Andreas Fault (SAF) and the Eastern California Shear Zone (ECSZ). Two sets of GPS data are processed, analyzed and applied to analytic and numerical models describing the interseismic behavior of the earthquake cycle. The Carrizo segment is mature (i.e., had many earthquakes) and has juxtaposed terrains with varying rock properties laterally across the fault system. Lateral variations in rock properties affect the pattern of deformation around strike-slip faults and affect how surrounding rock deforms and if not considered may bias the interpretation of the faulted system. The Carrizo segment separates Franciscan terrain northeast of the fault from Salinian block to the southwest. GPS data are well fit to a model with a 15-25 km weak zone northeast of the Carrizo segment. The long-term slip rate estimated on the SAF is 34-38 mm/yr, with 2-4 mm/yr accommodated on faults to the west. The viscosity for the combined lower crust/upper mantle is estimated at 2-5x10^19 Pa s. This model is consistent with the distribution of rock type and corresponding laboratory data on their material properties, paleoseismic, seismic and magnetotelluric data. The ECSZ is a young (

Book Palaeoseismology

    Book Details:
  • Author : Klaus Reicherter
  • Publisher : Geological Society of London
  • Release : 2009
  • ISBN : 9781862392762
  • Pages : 344 pages

Download or read book Palaeoseismology written by Klaus Reicherter and published by Geological Society of London. This book was released on 2009 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the tremendous toll in human lives and attendant economic losses, it is appropriate that scientists are working hard to understand better earthquakes, with the aim of forecasting and, ultimately, predicting them. In the last decades increasing attention has been paid to the coseismic effects on the natural environment, creating a solid base of empirical data for the estimation of source parameters of strong earthquakes based on geological observations. The recently introduced INQUA scale (Environmental Seismic Intensity-ESI 2007 Scale) of macroseismic intensity clearly shows how the systematic study of earthquake surface faulting, coseismic liquefaction, tsunami deposits and other primary and secondary ground effects can be integrated with 'traditional' seismological and tectonic information to provide a better understanding of the seismicity level of an area and the associated hazards. At the moment this is the only scientific means of equating the seismic records to the seismic cycle time-spans extending the seismic catalogues even to tens of thousands of years, improving future seismic hazard analyses. This Special Publication covers some of the latest multidisciplinary work undertaken to achieve that aim. Eighteen papers from research groups from all continents address a wide range of topics related both to palaeoseismological studies and assessment of macroseismic intensity based only on the natural phenomena associated with an earthquake.

Book Computational earthquake science  2

Download or read book Computational earthquake science 2 written by Andrea Donnellan and published by Springer Science & Business Media. This book was released on 2004-11-22 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part II of the book embraces dynamic rupture and wave propagation, computational environment and algorithms, data assimilation and understanding, and applications of models to earthquakes. This part also contains articles on the computational approaches and challenges of constructing earthquake models.

Book Earthquake Processes  Physical Modelling  Numerical Simulation and Data Analysis Part I

Download or read book Earthquake Processes Physical Modelling Numerical Simulation and Data Analysis Part I written by Mitsuhiro Matsu'ura and published by Birkhäuser. This book was released on 2012-12-06 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics covered in Part I range from the microscopic simulation and laboratory studies of rock fracture and the underlying mechanism for nucleation and catastrophic failure to the development of theoretical models of frictional behaviors of faults; as well as the simulation studies of dynamic rupture processes and seismic wave propagation in a 3-D heterogeneous medium, to the case studies of strong ground motions from the 1999 Chi-Chi earthquake and seismic hazard estimation for Cascadian subduction zone earthquakes.

Book Earthquake Cycle Research with Satellites

Download or read book Earthquake Cycle Research with Satellites written by Nathan R. Hicks and published by Anjum Publishers. This book was released on 2023-09-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The motion of the Earth's tectonic plates creates a gradual accumulation of stress at their boundaries, followed by a rapid release in earthquakes, a process known as the earthquake cycle. Studying this process is important because of the hazards earthquakes pose, but presents challenges due to the multi-scale nature of the problem-stresses build up over hundreds to thousands of years, while earthquakes break narrow fault zones in a matter of seconds. In this thesis, we combine a variety of techniques to study the earthquake cycle on multiple temporal and spatial scales, including satellite-based interferometric synthetic aperture radar (InSAR) to observe the slow deformation of the Earth over wide areas, and high-performance computational simulations to model faults during earthquakes. We begin by presenting a method for removing the signal of plate-tectonic motion in large-scale InSAR measurements, allowing for better observation of small ground deformations.