Download or read book The Robust Multigrid Technique written by Sergey I. Martynenko and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-09-25 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
Download or read book The Robust Multigrid Technique written by Sergey I. Martynenko and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-09-25 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
Download or read book Towards Robust Algebraic Multigrid Methods for Nonsymmetric Problems written by James Lottes and published by Springer. This book was released on 2017-03-24 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a rigorous, abstract analysis of multigrid methods for positive nonsymmetric problems, particularly suited to algebraic multigrid, with a completely new approach to nonsymmetry which is based on a new concept of absolute value for nonsymmetric operators. Multigrid, and in particular algebraic multigrid, has become an indispensable tool for the solution of discretizations of partial differential equations. While used in both the symmetric and nonsymmetric cases, the theory for the nonsymmetric case has lagged substantially behind that for the symmetric case. This thesis closes some of this gap, presenting a major and highly original contribution to an important problem of computational science. The new approach to nonsymmetry will be of interest to anyone working on the analysis of discretizations of nonsymmetric operators, even outside the context of multigrid. The presentation of the convergence theory may interest even those only concerned with the symmetric case, as it sheds some new light on and extends existing results.
Download or read book Multi Grid Methods and Applications written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-grid methods are the most efficient tools for solving elliptic boundary value problems. The reader finds here an elementary introduction to multi-grid algorithms as well as a comprehensive convergence analysis. One section describes special applications (convection-diffusion equations, singular perturbation problems, eigenvalue problems, etc.). The book also contains a complete presentation of the multi-grid method of the second kind, which has important applications to integral equations (e.g. the "panel method") and to numerous other problems. Readers with a practical interest in multi-grid methods will benefit from this book as well as readers with a more theoretical interest.
Download or read book Multigrid Techniques written by Achi Brandt and published by SIAM. This book was released on 2011-01-01 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text presents the best practices of developing multigrid solvers for large-scale computational problems in science and engineering. By representing a problem at multiple scales and employing suitable interscale interactions, multigrid avoids slowdown due to stiffness and reduces the computational cost of classical algorithms by orders of magnitude. Starting from simple examples, this book guides the reader through practical stages for developing reliable multigrid solvers, methodically supported by accurate performance predictors. The revised edition presents discretization and fast solution of linear and nonlinear partial differential systems; treatment of boundary conditions, global constraints and singularities; grid adaptation, high-order approximations, and system design optimization; applications to fluid dynamics, from simple models to advanced systems; new quantitative performance predictors, a MATLAB sample code, and more. Readers will also gain access to the Multigrid Guide 2.0 Web site, where updates and new developments will be continually posted, including a chapter on Algebraic Multigrid.
Download or read book A Multigrid Tutorial written by William L. Briggs and published by SIAM. This book was released on 2000-07-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.
Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-03-10 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.
Download or read book Introduction to Numerical Geodynamic Modelling written by Taras Gerya and published by Cambridge University Press. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.
Download or read book Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier Stokes Equations in General Coordinates written by Cornelis W. Oosterlee and published by . This book was released on 1993 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Robust Multigrid Algorithms for the Incompressible Navier Stokes Equations written by Ruben S. Montero and published by . This book was released on 2000 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anisotropies occur naturally in CFD where the simulation of small scale physical phenomena, such as boundary layers at high Reynolds numbers, causes the grid to be highly stretched leading to a slow down in convergence of multigrid methods. Several approaches aimed at making multigrid a robust solver have been proposed and analyzed in literature using the scalar diffusion equation. However, they have been rarely applied to solving more complicated models, like the incompressible Navier-Stokes equations. This paper contains the first published numerical results of the behavior of two popular robust multigrid approaches (alternating-plane smoothers combined with standard coarsening and plane implicit smoothers combined with semi-coarsening) for solving the 3-D incompressible Navier-Stokes equations in the simulation of the driven cavity and a boundary layer over a flat plate on a stretched grid. The discrete operator is obtained using a staggered-grid arrangement of variables with a finite volume technique and second-order accuracy is achieved using defect correction within the multigrid cycle. Grid size, grid stretching and Reynolds number are the factors considered in evaluating the robustness of the multigrid methods. Both approaches yield large increases in convergence rates over cell-implicit smoothers on stretched grids. The combination of plane implicit smoothers and semi-coarsening was found to be fully robust in the fiat plate simulation up to Reynolds numbers 10(exp 6) and the best alternative in the driven cavity simulation for Reynolds numbers above 10(exp 3). The alternating-plane approach exhibits a better behavior for lower Reynolds numbers (below to 10(exp 3) in the driven cavity simulation. A parallel variant of the smoother, tri-plane ordering, presents a good trade-off between convergence and parallel properties.
Download or read book Practical Fourier Analysis for Multigrid Methods written by Roman Wienands and published by CRC Press. This book was released on 2004-10-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detaile
Download or read book An Introduction to Multigrid Methods written by Pieter Wesseling and published by R.T. Edwards, Inc.. This book was released on 2004 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the principles, techniques, applications and literature of multigrid methods. Aimed at an audience with non-mathematical but computing-intensive disciplines and basic knowledge of analysis, partial differential equations and numerical mathematics, it is packed with helpful exercises, examples and illustrations.
Download or read book Robust Multi Grid Methods written by W. Hackbusch and published by Vieweg+teubner Verlag. This book was released on 1989 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respec tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e.
Download or read book Multigrid Methods IV written by P.W. Hemker and published by Birkhäuser. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection from the papers presented at the Fourth European Multigrid Conference, held in Amsterdam, July 6-9,1993. There were 78 registered participants from 14 different countries, and 56 presentations were given. The preceding conferences in this series were held in Cologne (1981, 1985) and in Bonn (1990). Also at the other side of the Atlantic special multigrid conferences are held regularly, at intervals of two years, always in Copper Mountain, Colorado, US. The Sixth Copper Mountain Conference on Multigrid Methods took place in April, 1993. Circumstances prevented us from putting a larger time interval between the Copper and Amsterdam meetings. The next European meeting is planned in 1996, a year later than the next Copper Meeting. When the first multigrid conference was held in 1981 there was no doubt about the usefulness of a conference dedicated specially to multigrid, because multigrid was a new and relatively unexplored subject, still in a pioneering stage, and pursued by specialists. The past twenty years have shown a rapid growth in theoretical understanding, useful applications and widespread acceptance of multi grid in the applied disciplines. Hence, one might ask whether there is still a need today for conferences specially dedicated to multigrid. The general consensus is that the answer is affirmative. New issues have arisen that are best addressed or need also be addressed from a special multigrid point of view.
Download or read book Parallel Computing Technologies written by Victor Malyshkin and published by Springer Nature. This book was released on 2021-09-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 16th International Conference on Parallel Computing Technologies, PaCT 2021, which was held during September 13-18, 2021. The conference was planned to take place in Kaliningrad, Russia, but changed to an online event due to the COVID-19 pandemic. The 24 full and 12 short papers included in this book were carefully reviewed and selected from 62 submissions. They were organized in topical sections as follows: parallel programming methods and tools; applications; memory-efficient data structures; experimental studies; job management; essential algorithms; computing services; and cellular automata.
Download or read book multigrid methods written by Stephen F. Mccormick and published by CRC Press. This book was released on 2020-08-12 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of research papers on a wide variety of multigrid topics, including applications, computation and theory. It represents proceedings of the Third Copper Mountain Conference on Multigrid Methods, which was held at Copper Mountain, Colorado.
Download or read book Numerical Solution of Partial Differential Equations on Parallel Computers written by Are Magnus Bruaset and published by Springer Science & Business Media. This book was released on 2006-03-05 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.