EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Optoelectronic Diversity of Layered Halide Perovskites

Download or read book The Optoelectronic Diversity of Layered Halide Perovskites written by Matthew David Smith and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The path towards emergent photophysics and new technologically desirable physical properties lies through synthesis of new materials. A powerful framework for developing such materials is the idea of hybrids, which contain both organic and inorganic components in a single chemical compound. These two building blocks each offer advantages compared to the other. The ability to design organic molecules with exact precision over atomic connectivity and elemental specificity is unmatched, while inorganic building units contribute increased robustness and intriguing optoelectronic properties. Additionally, the differing reactivities and stabilities of these components dictates simple and mild synthetic conditions such as solution-state self-assembly, allowing easy access to a diverse phase space of possible materials. I have explored how organic-inorganic hybrid materials contain both striking similarities and drastic departures from the optoelectronic properties of their separate components, particularly evident in the family of layered lead-halide hybrids. Much of my focus centers on understanding and controlling the behavior of excitons in the inorganic layers of the two-dimensional lead-halide perovskites. Using a combination of in situ optical spectroscopy and X-ray diffraction techniques, I demonstrated how reversible intercalation of polarizable species such as the molecular dihalogens, such as iodine, can tune the degree of electronic confinement without altering the structure of the inorganic layers in which excitons are confined. More reactive halogens react with the perovskite to perform unusual chemistry with both the organic and inorganic layers. Room-temperature white-light photoluminescence is a rare phenomenon exhibited by certain layered lead-halide perovskites. I initially helped elucidate the photoluminescence mechanism, which I ascribed to the radiative recombination of self-trapped excitons. I further demonstrated that this broad emission is not restricted to a few members of the halide perovskite family, but rather is common to all layered lead-chloride and lead-bromide perovskites, although this emission is highly temperature dependent. With variable-temperature photoluminescence and single-crystal X-ray diffraction, I established correlations between the propensity to exhibit broad photoluminescence at a given temperature and particular octahedral tilts of the lead-bromide octahedra, and provided further support for the self-trapped exciton hypothesis. With additional both static and time-resolved temperature-dependent optical spectroscopies, I found that self-trapped excitons are pervasive in the lead-bromide perovskites, even when the broad photoluminescence is not visible, suggesting a persistent pathway for non-radiative recombination that limits quantum efficiency. Finally, I extended the phenomenon of broadband photoluminescence beyond the layered perovskites to the class of lead-halide hybrids generally. I synthesized and characterized both layered and zero-dimensional lead-bromide hybrids templated by sulfonium-based cations that exhibit room-temperature broad red emission.

Book Two Dimensional Halide Perovskites for Emerging New  Generation Photodetectors

Download or read book Two Dimensional Halide Perovskites for Emerging New Generation Photodetectors written by Yingying Tang and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (id est MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, colour tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights of latest researches on these two types of 2D halide perovskites for developing photodetectors, with an emphasis on synthesis methods, structural characterization, optoelectronic properties, and theoretical analysis and simulations. We also discuss the current challenging issues and future perspective. We hope this chapter would add new elements for understanding halide perovskite-based 2D materials and for developing their more efficient optoelectronic devices.

Book Organic Inorganic Halide Perovskite Photovoltaics

Download or read book Organic Inorganic Halide Perovskite Photovoltaics written by Nam-Gyu Park and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers fundamentals of organometal perovskite materials and their photovoltaics, including materials preparation and device fabrications. Special emphasis is given to halide perovskites. The opto-electronic properties of perovskite materials and recent progress in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book Perovskite Photovoltaics and Optoelectronics

Download or read book Perovskite Photovoltaics and Optoelectronics written by Tsutomu Miyasaka and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.

Book Halide Perovskite Semiconductors

Download or read book Halide Perovskite Semiconductors written by Yuanyuan Zhou and published by John Wiley & Sons. This book was released on 2023-12-22 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Halide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discussions on the fundamentals of halide perovskites aim to expand the basic science fields of physics, chemistry, and materials science. Edited by two highly qualified researchers, Halide Perovskite Semiconductors includes specific information on: Crystal/defect theory of halide perovskites, crystal chemistry of halide perovskites, and processing and microstructures of halide perovskites Single-crystals of halide perovskites, nanocrystals of halide perovskites, low-dimensional perovskite crystals, and nanoscale heterogeneity of halide perovskites Carrier mobilities and dynamics in halide perovskites, light emission of halide perovskites, photophysics and ultrafast spectroscopy of halide perovskites Hot carriers in halide perovskites, correlating photophysics with microstructures in halide perovskites, chemical stability of halide perovskites, and solid-state ionics of halide perovskites Readers can find solutions to technological issues and challenges based on the fundamental knowledge gained from this book. As such, Halide Perovskite Semiconductors is an essential in-depth treatment of the subject, ideal for solid-state chemists, materials scientists, physical chemists, inorganic chemists, physicists, and semiconductor physicists.

Book Color Tuning for Perovskite Light Emitting Diodes

Download or read book Color Tuning for Perovskite Light Emitting Diodes written by Hongling Yu and published by Linköping University Electronic Press. This book was released on 2020-11-11 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal halide perovskites (MHPs) are recognized as promising semiconductor materials for a variety of optical and electrical device applications due to their cost-effective and outstanding optoelectronic properties. As one of the most significant applications, perovskite light-emitting diodes (PeLEDs) hold promise for future lighting and display technologies, attributed to their high photoluminescence quantum yield (PLQY), high color purity, and tunable emission color. The emission colors of PeLEDs can be tuned by mixing the halide anions, adjusting the size of perovskite nanocrystals, or changing the dimensionality of perovskites. However, in practice, all these different approaches have their own advantages and challenges. This thesis centres around the color tunability of perovskites, aiming to develop PeLEDs with different colors using different approaches. We first demonstrate red and near-infrared PeLEDs using a straightforward approach – in situ solution-processed perovskite quantum dots (PQDs). PQDs prepared from colloidal approaches are widely reported and used in LEDs. In contrast, PQDs prepared from the in situ approaches are hardly reported, although they have advantages for device applications. By employing aromatic ammonium iodide (1-naphthylmethyl ammonium iodide, NMAI) as an agent into perovskite precursor solutions, together with annealing temperature modulation, we obtain in situ grown PQDs delivering high external quantum efficiencies (EQEs) of up to 11.0% with tunable electroluminescence (EL) spectra (667 - 790 nm). Our in situ generated PQDs based on pure-halogen perovskites can be easily obtained through a simple deposition process and free of phase segregation, making them a more promising approach for tuning the emission colors of perovskite LEDs. We then move to blue PeLEDs using cesium-based mixed-Br/Cl perovskites. Although mixed halides are a straightforward strategy to tune the emission color, PeLEDs based on this approach suffer from poor color stability, which is attributed to surface defects at grain boundaries. Under the condition of optical excitations, light density over a certain value (a threshold), oxygen, and surface defects at perovskite grain boundaries are found to be key factors inducing photoluminescence (PL) spectral instability of CsPb(Br1?xClx)3 perovskites. Upon electrical bias, defects at grain boundaries provide undesirable halide migration channels, responsible for EL spectral instability issues. Through effective defect passivation, the PL spectral resistance to oxygen is enhanced; moreover, high-performance and color-stable blue PeLEDs are achieved, delivering a maximum luminance of 5351 cd m–2 and a peak EQE of 4.55% with a peak emission wavelength at 489 nm. These findings provide new insights into the color instability issue of mixed halide blue perovskites, against which we also demonstrate an effective strategy. We finally realize single-emissive-layer (EML) white PeLEDs by employing a mixed halide perovskite film as the EML. In spite of high-performance monochromatic blue, green, and red colors, the development of white PeLEDs, especially for single-EML ones, remains a very big challenge. By effective modulation of the halide salt precursors, we achieve single-EML white PeLEDs with Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.33), close to those (0.3128, 0.3290) of the CIE standard illuminant D65. This work not only provides a successful demonstration of a single-EML white PeLED, but also provides useful guidelines for the future development of highperformance single-EML white PeLEDs.

Book Metal Halide Perovskite Nanostructures for Optoelectronic Applications and Fundamental Studies

Download or read book Metal Halide Perovskite Nanostructures for Optoelectronic Applications and Fundamental Studies written by Yongping Fu and published by . This book was released on 2018 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-resolved photoluminescence studies of individual heterostructures reveal internal energy transfer with a timescale of hundreds of picoseconds from lower-[n] to higher-[n] layers (high bandgap to low bandgap). These heterostructures capable of emitting multiple colors with high spectral purity are attractive platforms to explore new properties and physics in 2D materials. They also show promise for building versatile photonic devices that are easily solution-processed. The following appendices provide complementary information to the accomplished work presented in the main chapters. Specifically, Appendix A-H provide additional figures and tables to Chapters 2-9, respectively. Appendix I describes electrically driven light emission from 1D NWs and 2D nanoplates of cesium lead halide perovskites The remarkable solar performance of lead halide perovskites has been attributed to their advantageous physical properties that present many mysteries, challenges, as well as opportunities. The body of thesis here has demonstrated better control over the crystal growth and rational design of nanostructures of these fascinating materials, as well as better understanding of their complex solid-state chemistry can further enhance their applications. Moreover, the excellent properties of these single-crystal perovskite nanostructures (and their heterostructures) of diverse families of perovskite materials with different cations, anions, and dimensionality make them ideal for fundamental physical studies of carrier transport and decay mechanisms, and for enabling high performance optoelectronic applications, such as NW lasers.

Book Perovskite Optoelectronic Devices

Download or read book Perovskite Optoelectronic Devices written by Basudev Pradhan and published by Springer Nature. This book was released on with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Organic Inorganic Perovskites

Download or read book Hybrid Organic Inorganic Perovskites written by Li Wei and published by John Wiley & Sons. This book was released on 2020-06-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.

Book Perovskite Materials and Devices  2 Volumes

Download or read book Perovskite Materials and Devices 2 Volumes written by Liming Ding and published by John Wiley & Sons. This book was released on 2022-06-07 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Materials and Devices A comprehensive overview of the important scientific and technological advances in commercialization of this important mineral Perovskite has held much interest for scientists and industrialists, as the mineral is abundantly available in nature. Due to the intriguing and unusual physical properties of perovskite materials—the high-absorption coefficient, low exciton-binding energy, and high dielectric constant, for example—there has been substantial focus on perovskite’s potential in applications. In particular, they have been of great use in sensors and catalyst electrodes, certain types of fuel cells, solar cells, lasers, memory devices, and spintronics, and as a result hold exciting opportunities for physicists, chemists, and material scientists alike. Perovskite Materials and Devices comprehensively covers all the milestone work in perovskites research, systematically introducing the properties, methods, and technologies associated with the mineral from fundamentals to promising applications to commercialization issues. The book focuses on traditional and novel electronic operations, such as solar cells, LEDs, lasing, photodetectors, X-ray detectors, transistors, and more. It also investigates ways to make the use of such materials more environmentally friendly, which in turn can make perovskite minerals more commercially viable. Perovskite Materials and Devices readers will also find Summaries of the latest state-of-the-art developments and technologies, such as perovskite nanocrystals and novel electronic devices Detailed discussion of organic/inorganic hybrid perovskites, all-inorganic perovskite CsPbX3, and lead-free halide perovskites Investigation of the photovoltaic applications, namely single-crystal devices, tandem cells, integrated devices, semi-transparent devices, and flexible devices Description of large-area module fabrication and stability investigating Perovskite Materials and Devices is a useful reference for materials scientists, solid state physicists and chemists, surface physicists and chemists, and electronic engineers. It is also an ideal resource for libraries that supply these fields.

Book Metal Halide Perovskite Semiconductors

Download or read book Metal Halide Perovskite Semiconductors written by Wanyi Nie and published by Springer Nature. This book was released on 2023-04-20 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will provide readers with a good overview of some of most recent advances in the field of technology for perovskite materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, Xray detection and emerging transistor structures. The book will have an in-depth review of the research topics from world-leading specialists in the field. The authors build connections between the materials’ physical properties to the main applications such as photovoltaics, LED, FETs and X-ray sensors. They also discuss the similarities and main differences when using perovskites for those devices.

Book Multifunctional Organic   Inorganic Halide Perovskite

Download or read book Multifunctional Organic Inorganic Halide Perovskite written by Nam-Gyu Park and published by CRC Press. This book was released on 2022-03-10 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2018-12-07 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book Lead Halide Perovskite Solar Cells

Download or read book Lead Halide Perovskite Solar Cells written by David J. Fisher and published by Materials Research Forum LLC. This book was released on 2020-06-05 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lead halide perovskite materials have a huge potential in solar cell technology. They offer the combined advantages of low-cost preparation and high power-conversion efficiency. The present review focusses on the following topics: Power Conversion Efficiency; Electron Transport, Hole Transport and Interface Layers; Material Preparation; Cesium-Doped Lead-Halide Perovskites; Formamidinium-Doped Lead-Halide Perovskites; Methylammonium Lead-Halide Perovskites; Hysteresis, Stability and Toxicity Problems. The book references 334 original resources and includes their direct web link for in-depth reading. Keywords: Solar Cells, Lead Halide Perovskite Materials, Cesium-Doped Lead-Halide Perovskites, Formamidinium-Doped Lead-Halide Perovskites, Methylammonium Lead-Halide Perovskites, Electron-Transport Layer, Hole-Transport Layer, Interface Layers, Hysteresis Problem, Stability Problem, Toxicity Problem.

Book Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications

Download or read book Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications written by Giacomo Giorgi and published by CRC Press. This book was released on 2017-07-12 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskites are a class of recently discovered crystals with a multitude of innovative applications. In particular, a lead role is played by organic-inorganic halide perovskites (OIHPs) in solar devices. In 2013 Science and Nature selected perovskite solar cells as one of the biggest scientific breakthroughs of that year. This book provides the first comprehensive account of theoretical aspects of perovskite solar cells, starting at an introductory level but covering the latest cutting-edge research. Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications aims to provide a theoretical standpoint on OIHPs and on their photovoltaic applications, with particular focus on the issues that are still limiting their usage in solar cells. This book explores the role that organic cations and defects play in the material properties of OIHPs and their effects on the final device, in addition to discussing the electric properties of OIHPs; the environmentally friendly alternatives to the use of lead in their structural and electronic properties; theoretical screening for OIHP-related material for solar-to-energy conversion; and the nature and the behavior of quasiparticles in OIHPs.

Book Low Dimensional Halide Perovskites

Download or read book Low Dimensional Halide Perovskites written by Yiqiang Zhan and published by Elsevier. This book was released on 2022-11-29 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-Dimensional Halide Perovskites: Structure, Properties and Applications provides an in-depth look at halide perovskite materials and their applications. Chapters cover history, fundamentals, physiochemical and optoelectronic properties, synthesis and characterization of traditional and Pb-free halide perovskites. The book concludes with sections describing the different applications of halide perovskites for solar cells, light-emitting diodes and photo detectors, as well as the challenges faced in the industrialization of halide perovskite-based devices and forward-thinking prospects for further deployment. - Discusses the applications of halide perovskites according to their dimensionality - Includes a look at current challenges for the commercialization of halide perovskites, while also previewing some possible solutions - Presents alternative environmentally-friendly materials that can used to replace the current toxic materials-based halide perovskites