EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology  Volume I

Download or read book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology Volume I written by Dan Gabriel Cacuci and published by Springer Nature. This book was released on 2022-07-19 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called “sensitivities”) of results (also called “responses”) produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing “reduced-order modeling” by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing “model validation,” by comparing computations to experiments to address the question “does the model represent reality?” (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward “predictive modeling” to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse “predictive modeling”; (viii) designing and optimizing the system. This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier “comprehensive” is employed to highlight that the model parameters considered within the framework of this methodology also include the system’s uncertain boundaries and internal interfaces in phase-space. The model’s responses can be either scalar-valued functionals of the model’s parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high order sensitivities of responses to model parameters for systems that are also nonlinear in their underlying state functions. Such computations are not feasible with any other methodology. The application of the nth-CASAM-L and the nth-CASAM-N overcomes the so-called “curse of dimensionality” in sensitivity and uncertainty analysis, thus revolutionizing all of the fields of activities which require accurate computation of response sensitivities. Since this monograph includes many illustrative, fully worked-out, paradigm problems, it can serve as a textbook or as supplementary reading for graduate courses in academic departments in the natural sciences and engineering.

Book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology  Volume II

Download or read book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology Volume II written by Dan Gabriel Cacuci and published by Springer Nature. This book was released on 2023-04-26 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes a comprehensive adjoint sensitivity analysis methodology (nth-CASAM), developed by the author, which enablesthe efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The nth-CASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby overcoming the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The nth-CASAM is applicable to any model; the larger the number of model parameters, the more efficient the nth-CASAM becomes for computing arbitrarily high-order response sensitivities. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. This Volume Two, the second of three, presents the large-scale application of the nth-CASAM to perform a representative fourth-order sensitivity analysis of the Polyethylene-Reflected Plutonium benchmark described in the Nuclear Energy Agency (NEA) International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. This benchmark is modeled mathematically by the Boltzmann particle transport equation, involving 21,976 imprecisely-known parameters, the numerical solution of which requires representative large-scale computations. The sensitivity analysis presented in this volume is the most comprehensive ever performed in the field of reactor physics and the results presented in this book prove, perhaps counter-intuitively, that many of the 4th-order sensitivities are much larger than the corresponding 3rd-order ones, which are, in turn, much larger than the 2nd-order ones, all of which are much larger than the 1st-order sensitivities. Currently, the nth-CASAM is the only known methodology which enables such large-scale computations of exactly obtained expressions of arbitrarily-high-order response sensitivities.

Book The Nth order Comprehensive Adjoint Sensitivity Analysis Methodology

Download or read book The Nth order Comprehensive Adjoint Sensitivity Analysis Methodology written by Dan G. Cacuci and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology  Volume III

Download or read book The nth Order Comprehensive Adjoint Sensitivity Analysis Methodology Volume III written by Dan Gabriel Cacuci and published by Springer Nature. This book was released on 2023-04-11 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes a comprehensive adjoint sensitivity analysis methodology (C-ASAM), developed by the author, enabling the efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The model’s responses can be either scalar-valued functionals of the model’s parameters and state variables (as customarily encountered, e.g., in optimization problems) or general function-valued responses, which are often of interest but are currently not amenable to efficient sensitivity analysis. The C-ASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby breaking the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The C-ASAM applies to any model; the larger the number of model parameters, the more efficient the C-ASAM becomes for computing arbitrarily high-order response sensitivities. The text includes illustrative paradigm problems which are fully worked-out to enable the thorough understanding of the C-ASAM’s principles and their practical application. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. It serves as a textbook or as supplementary reading for graduate course on these topics, in academic departments in the natural, biological, and physical sciences and engineering. This Volume Three, the third of three, covers systems that are nonlinear in the state variables, model parameters and associated responses. The selected illustrative paradigm problems share these general characteristics. A separate Volume One covers systems that are linear in the state variables.

Book The Nth order Comprehensive Adjoint Sensitivity Analysis Methodology

Download or read book The Nth order Comprehensive Adjoint Sensitivity Analysis Methodology written by Dan Gabriel Cacuci and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called "sensitivities") of results (also called "responses") produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing "reduced-order modeling" by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing "model validation," by comparing computations to experiments to address the question "does the model represent reality?" prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward "predictive modeling" to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse "predictive modeling" designing and optimizing the system. This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier "comprehensive" is employed to highlight that the model parameters considered within the framework of this methodology also include the systems uncertain boundaries and internal interfaces in phase-space. The models responses can be either scalar-valued functionals of the models parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as "nth-CASAM-L"), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the "nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems" (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high order sensitivities of responses to model parameters for systems that are also nonlinear in their underlying state functions. Such computations are not feasible with any other methodology. The application of the nth-CASAM-L and the nth-CASAM-N overcomes the so-called "curse of dimensionality" in sensitivity and uncertainty analysis, thus revolutionizing all of the fields of activities which require accurate computation of response sensitivities. Since this monograph includes many illustrative, fully worked-out, paradigm problems, it can serve as a textbook or as supplementary reading for graduate courses in academic departments in the natural sciences and engineering.

Book Applications of Data Assimilation and Inverse Problems in the Earth Sciences

Download or read book Applications of Data Assimilation and Inverse Problems in the Earth Sciences written by Alik Ismail-Zadeh and published by Cambridge University Press. This book was released on 2023-06-30 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.

Book A Survey of Sensitivity Analysis Methodology

Download or read book A Survey of Sensitivity Analysis Methodology written by Robert G. Hendrickson and published by . This book was released on 1984 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book ASME Technical Papers

Download or read book ASME Technical Papers written by and published by . This book was released on 1985 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essential Parameters in Sensitivity Analysis

Download or read book Essential Parameters in Sensitivity Analysis written by Dennis F. Wilkie and published by . This book was released on 1968 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: A method is developed to generate by one nth order sensitivity model all the sensitivity functions the partial derivative of x sub i with respect to q sub j, q superscript o, i = l, ..., n, j = l, ..., r for a single input, linear, time-invariant, controllable nth order system which depends on r different parameters. This represents an improvement over known methods for generating the sensitivity functions, which generally require a composite dynamic system of order n(r + l). In the development, two useful properties of the sensitivity functions of the states of the companion form of a system (i.e. the system A matrix is in companion form) are used. It is shown that all the sensitivity functions of the states of the companion form system can be generated by linear combinations of the signals on one sensitivity model of the system and the system states. The Leverrier algorithm has been extended so that the method of the paper is readily implemented on a digital or hybrid computer. Finally, an example is given, demonstrating how the technique of the paper can result in considerable time savings in the computer simulation and sensitivity analysis of systems. (Author).

Book Active Inductorless Filters

Download or read book Active Inductorless Filters written by Sanjit Kumar Mitra and published by . This book was released on 1971 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensitivity Analysis Methodology Improvements

Download or read book Sensitivity Analysis Methodology Improvements written by Alvin M. Cruze and published by . This book was released on 1967 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, the first of a three volume final report, outlines improvements made to ANCET during the research period covered by this report. ANCET is a rapid-running computer model which calculates casualties from a nuclear attack. The model was developed expressly for sensitivity analyses of civil defense systems and components; its structure and logic have been documented in past Research Triangle Institute research reports for the Office of Civil Defense. The improvements to the ANCET model developed during this research period fall into two major categories: (1) prompt effects and (2) fallout. The prompt effects improvements enable the calculation of casualties for a wide variety of approximations to the areal distributions of population of resources. The fallout improvements provide two fallout component models to the overall ANCET model; these are: (1) the WSEG-10 model and (2) the WSEG-10 model as modified by the National Academy of Sciences. Descriptions and detailed flow diagrams of ANCET subroutines which incorporate these modifications are included in this volume. In addition, this volume gives program listings for all subroutines which have been altered since the original documentation of the ANCET model. (Author).

Book Government Reports Announcements

Download or read book Government Reports Announcements written by and published by . This book was released on 1970 with total page 1084 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book U  S  Government Research and Development Reports

Download or read book U S Government Research and Development Reports written by and published by . This book was released on 1970 with total page 1296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book U S  Government Research   Development Reports

Download or read book U S Government Research Development Reports written by and published by . This book was released on 1970 with total page 1298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Second Order Adjoint Sensitivity Analysis Methodology

Download or read book The Second Order Adjoint Sensitivity Analysis Methodology written by Dan Gabriel Cacuci and published by CRC Press. This book was released on 2018-02-19 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Second-Order Adjoint Sensitivity Analysis Methodology generalizes the First-Order Theory presented in the author’s previous books published by CRC Press. This breakthrough has many applications in sensitivity and uncertainty analysis, optimization, data assimilation, model calibration, and reducing uncertainties in model predictions. The book has many illustrative examples that will help readers understand the complexity of the subject and will enable them to apply this methodology to problems in their own fields. Highlights: • Covers a wide range of needs, from graduate students to advanced researchers • Provides a text positioned to be the primary reference for high-order sensitivity and uncertainty analysis • Applies to all fields involving numerical modeling, optimization, quantification of sensitivities in direct and inverse problems in the presence of uncertainties. About the Author: Dan Gabriel Cacuci is a South Carolina SmartState Endowed Chair Professor and the Director of the Center for Nuclear Science and Energy, Department of Mechanical Engineering at the University of South Carolina. He has a Ph.D. in Applied Physics, Mechanical and Nuclear Engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Dept. of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society.