Download or read book The Nature of Statistical Evidence written by Bill Thompson and published by Springer Science & Business Media. This book was released on 2007-12-21 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to discuss whether statistical methods make sense. The present volume begins the task of providing interpretations and explanations of several theories of statistical evidence. It should be relevant to anyone interested in the logic of experimental science. Have we achieved a true Foundation of Statistics? We have made the link with one widely accepted view of science and we have explained the senses in which Bayesian statistics and p-values allow us to draw conclusions. This book has substantial implications for all users of Statistical methods.
Download or read book The Nature of Scientific Evidence written by Mark L. Taper and published by . This book was released on 2004-10 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mark Taper, Subhash Lele and an esteemed group of contributors explore the relationships among hypotheses, models, data and interference on which scientific progress rests in an attempt to develop a new quantitative framework for evidence.
Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Download or read book Statistical Evidence written by Richard Royall and published by Routledge. This book was released on 2017-11-22 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Download or read book Statistical Science in the Courtroom written by Joseph L. Gastwirth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert testimony relying on scientific and other specialized evidence has come under increased scrutiny by the legal system. A trilogy of recent U.S. Supreme Court cases has assigned judges the task of assessing the relevance and reliability of proposed expert testimony. In conjunction with the Federal judiciary, the American Association for the Advancement of Science has initiated a project to provide judges indicating a need with their own expert. This concern with the proper interpretation of scientific evidence, especially that of a probabilistic nature, has also occurred in England, Australia and in several European countries. Statistical Science in the Courtroom is a collection of articles written by statisticians and legal scholars who have been concerned with problems arising in the use of statistical evidence. A number of articles describe DNA evidence and the difficulties of properly calculating the probability that a random individual's profile would "match" that of the evidence as well as the proper way to intrepret the result. In addition to the technical issues, several authors tell about their experiences in court. A few have become disenchanted with their involvement and describe the events that led them to devote less time to this application. Other articles describe the role of statistical evidence in cases concerning discrimination against minorities, product liability, environmental regulation, the appropriateness and fairness of sentences and how being involved in legal statistics has raised interesting statistical problems requiring further research.
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Download or read book Breakthroughs in Statistics written by Samuel Kotz and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.
Download or read book Measuring Statistical Evidence Using Relative Belief written by Michael Evans and published by CRC Press. This book was released on 2015-06-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.
Download or read book The Nature of Scientific Evidence written by Mark L. Taper and published by University of Chicago Press. This book was released on 2010-12-15 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of the statistical foundations of scientific inference, The Nature of Scientific Evidence asks what constitutes scientific evidence and whether scientific evidence can be quantified statistically. Mark Taper, Subhash Lele, and an esteemed group of contributors explore the relationships among hypotheses, models, data, and inference on which scientific progress rests in an attempt to develop a new quantitative framework for evidence. Informed by interdisciplinary discussions among scientists, philosophers, and statisticians, they propose a new "evidential" approach, which may be more in keeping with the scientific method. The Nature of Scientific Evidence persuasively argues that all scientists should care more about the fine points of statistical philosophy because therein lies the connection between theory and data. Though the book uses ecology as an exemplary science, the interdisciplinary evaluation of the use of statistics in empirical research will be of interest to any reader engaged in the quantification and evaluation of data.
Download or read book Interpreting DNA Evidence written by Ian Evett and published by Sinauer Associates Incorporated. This book was released on 1998-01-01 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpretation of DNA profile matches depends on the use of statistical weights. This text provides the background information in statistics and genetics for the reader to arrive at these weights.
Download or read book Evidence Based Technical Analysis written by David Aronson and published by John Wiley & Sons. This book was released on 2011-07-11 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evidence-Based Technical Analysis examines how you can apply the scientific method, and recently developed statistical tests, to determine the true effectiveness of technical trading signals. Throughout the book, expert David Aronson provides you with comprehensive coverage of this new methodology, which is specifically designed for evaluating the performance of rules/signals that are discovered by data mining.
Download or read book Applied Statistical Methods written by Irving W. Burr and published by Elsevier. This book was released on 2014-05-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Statistical Methods covers the fundamental understanding of statistical methods necessary to deal with a wide variety of practical problems. This 14-chapter text presents the topics covered in a manner that stresses clarity of understanding, interpretation, and method of application. The introductory chapter illustrates the importance of statistical analysis. The next chapters introduce the methods of data summarization, including frequency distributions, cumulative frequency distributions, and measures of central tendency and variability. These topics are followed by discussions of the fundamental principles of probability, the concepts of sample spaces, outcomes, events, probability, independence of events, and the characterization of discrete and continuous random variables. Other chapters explore the distribution of several important statistics; statistical tests of hypotheses; point and interval estimation; and simple linear regression. The concluding chapters review the elements of single- and two-factor analysis of variance and the design of analysis of variance experiments. This book is intended primarily for advanced undergraduate and graduate students in the mathematical, physical, and engineering sciences, as well as in economics, business, and related areas. Researchers and line personnel in industry and government will find this book useful in self-study.
Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Download or read book Reproducibility and Replicability in Science written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-10-20 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Download or read book Philosophy of Statistics written by and published by Elsevier. This book was released on 2011-05-31 with total page 1253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statisticians and philosophers of science have many common interests but restricted communication with each other. This volume aims to remedy these shortcomings. It provides state-of-the-art research in the area of philosophy of statistics by encouraging numerous experts to communicate with one another without feeling "restricted by their disciplines or thinking "piecemeal in their treatment of issues. A second goal of this book is to present work in the field without bias toward any particular statistical paradigm. Broadly speaking, the essays in this Handbook are concerned with problems of induction, statistics and probability. For centuries, foundational problems like induction have been among philosophers' favorite topics; recently, however, non-philosophers have increasingly taken a keen interest in these issues. This volume accordingly contains papers by both philosophers and non-philosophers, including scholars from nine academic disciplines. - Provides a bridge between philosophy and current scientific findings - Covers theory and applications - Encourages multi-disciplinary dialogue
Download or read book Statistical Modeling for Naturalists written by Pedro F. Quintana Ascencio and published by Cambridge Scholars Publishing. This book was released on 2022-01-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.
Download or read book Computer Age Statistical Inference Student Edition written by Bradley Efron and published by Cambridge University Press. This book was released on 2021-06-17 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.