Download or read book Molecular Electronic Structures of Transition Metal Complexes I written by David Michael P. Mingos and published by Springer Science & Business Media. This book was released on 2012-01-11 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: J.P. Dahl: Carl Johan Ballhausen (1926–2010).- J.R. Winkler and H.B. Gray: Electronic Structures of Oxo-Metal Ions.- C.D. Flint: Early Days in Kemisk Laboratorium IV and Later Studies.- J.H. Palmer: Transition Metal Corrole Coordination Chemistry. A Review Focusing on Electronic Structural Studies.- W.C. Trogler: Chemical Sensing with Semiconducting Metal Phthalocyanines.- K.M. Lancaster: Biological Outer-Sphere Coordination.- R.K. Hocking and E.I. Solomon: Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions.- K.B. Møller and N.E. Henriksen: Time-resolved X-ray diffraction: The dynamics of the chemical bond.
Download or read book Electronic Structure and Properties of Transition Metal Compounds written by Isaac B. Bersuker and published by John Wiley & Sons. This book was released on 2010-12-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.
Download or read book Molecular Orbitals of Transition Metal Complexes written by Yves Jean and published by Oxford University Press. This book was released on 2005-03-24 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts with the most elementary ideas of molecular orbital theory and leads the reader progressively to an understanding of the electronic structure, geometry and, in some cases, reactivity of transition metal complexes. The qualitative orbital approach, based on simple notions such as symmetry, overlap and electronegativity, is the focus of the presentation and a substantial part of the book is associated with the mechanics of the assembly of molecular orbital diagrams. The first chapter recalls the basis for electron counting in transition metal complexes. The main ligand fields (octahedral, square planar, tetrahedral, etc.) are studied in the second chapter and the structure of the "d block" is used to trace the relationships between the electronic structure and the geometry of the complexes. The third chapter studies the change in analysis when the ligands have pi-type interactions with the metal. All these ideas are then used in the fourth chapter to study a series of selected applications of varying complexity (e.g. structure and reactivity). The fifth chapter deals with the "isolobal analogy" which points out the resemblance between the molecular orbitals of inorganic and organic species and provides a bridge between these two subfields of chemistry. The last chapter is devoted to a presentation of basic Group Theory with applications to some of the complexes studied in the earlier chapters.
Download or read book Molecular Electronic Structures of Transition Metal Complexes written by Carl Johan Ballhausen and published by . This book was released on 1979 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Molecular Electronic Structures of Transition Metal Complexes II written by David Michael P. Mingos and published by Springer Science & Business Media. This book was released on 2012-01-11 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: T. Ziegler: A Chronicle About the Development of Electronic Structure Theories for Transition Metal Complexes.- J. Linderberg: Orbital Models and Electronic Structure Theory.- J.S. and J.E. Avery: Sturmians and Generalized Sturmians in Quantum Theory.- B.T Sutcliffe: Chemistry as a “Manifestation of Quantum Phenomena” and the Born–Oppenheimer Approximation?- A.J. McCaffery: From Ligand Field Theory to Molecular Collision Dynamics: A Common Thread of Angular Momentum.- M. Atanasov, D. Ganyushin, K. Sivalingam and F. Neese: A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions.- R.S. Berry and B.M. Smirnov: The Phase Rule: Beyond Myopia to Understanding.
Download or read book A Textbook of Inorganic Chemistry Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2017-01-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Download or read book Physical Inorganic Chemistry written by S. F. A. Kettle and published by Springer. This book was released on 2013-11-11 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: GEORGE CHRISTOU Indiana University, Bloomington I am no doubt representative of a large number of current inorganic chemists in having obtained my undergraduate and postgraduate degrees in the 1970s. It was during this period that I began my continuing love affair with this subject, and the fact that it happened while I was a student in an organic laboratory is beside the point. I was always enchanted by the more physical aspects of inorganic chemistry; while being captivated from an early stage by the synthetic side, and the measure of creation with a small c that it entails, I nevertheless found the application of various theoretical, spectroscopic and physicochemical techniques to inorganic compounds to be fascinating, stimulating, educational and downright exciting. The various bonding theories, for example, and their use to explain or interpret spectroscopic observations were more or less universally accepted as belonging within the realm of inorganic chemistry, and textbooks of the day had whole sections on bonding theories, magnetism, kinetics, electron-transfer mechanisms and so on. However, things changed, and subsequent inorganic chemistry teaching texts tended to emphasize the more synthetic and descriptive side of the field. There are a number of reasons for this, and they no doubt include the rise of diamagnetic organometallic chemistry as the dominant subdiscipline within inorganic chemistry and its relative narrowness vis-d-vis physical methods required for its prosecution.
Download or read book Valency and Molecular Structure written by E. Cartmell and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction to the spectroscopy of complex compounds. Other topics include the experimental foundation of the quantum theory; molecular-orbital method; ionic, hydrogen, and metallic bonds; structures of some simple inorganic compounds; and electronic spectra of transition-metal complexes. This publication is a useful reference for undergraduate students majoring in chemistry and other affiliated science subjects.
Download or read book Metal Complexes written by Xue Duan and published by Springer. This book was released on 1981-03-01 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Approaches to Biological Inorganic Chemistry written by Robert R. Crichton and published by Elsevier. This book was released on 2019-09-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced aspects of key methods in biological inorganic chemistry. - Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout - Includes color images throughout to enable easier visualization of molecular mechanisms and structures - Provides worked examples and problems to help illustrate and test the reader's understanding of each technique - Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures
Download or read book Electronic Structure and the Properties of Solids written by Walter A. Harrison and published by Courier Corporation. This book was released on 2012-03-08 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.
Download or read book Chemistry 2e written by Paul Flowers and published by . This book was released on 2019-02-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Download or read book The Chemistry of the Transition Elements written by Alan Earnshaw and published by . This book was released on 1973 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: For freshmen chemistry students.
Download or read book Orbital Approach to the Electronic Structure of Solids written by Enric Canadell and published by Oxford University Press. This book was released on 2012-01-12 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aiming at filling the gap between the different languages of the physics and chemistry communities to understand the electronic structure of solids. How structure and properties of solids are related is illustrated by considering in detail a large number of real examples.
Download or read book A Theoretical Study of the Electronic Structure of Transition metal Complexes written by James W. Richardson and published by . This book was released on 1956 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Spin States in Biochemistry and Inorganic Chemistry written by Marcel Swart and published by John Wiley & Sons. This book was released on 2015-09-17 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.
Download or read book Machine Learning in Chemistry written by Jon Paul Janet and published by American Chemical Society. This book was released on 2020-05-28 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important