Download or read book The Mechanics of the Circulation written by C. G. Caro and published by Cambridge University Press. This book was released on 2012 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book outlines the anatomy and physiology of the circulation and explains the mechanical principles that govern it.
Download or read book The Mechanics of the Circulation written by Colin Gerald Caro and published by . This book was released on 2012 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the new introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades. With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole. This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests"--
Download or read book The Mechanics of the Circulation written by and published by . This book was released on 2012 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the new introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades. With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole. This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests"--
Download or read book Biofluid Mechanics written by Wei Yin and published by Academic Press. This book was released on 2011-11-02 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for future research efforts in the subject area. - Uses language and math that is appropriate and conducive for undergraduate learning, containing many worked examples and end of chapter problems - All engineering concepts and equations are developed within a biological context - Covers topics in the traditional biofluids curriculum, as well as addressing other systems in the body that can be described by biofluid mechanics principles, such as air flow through the lungs, joint lubrication, intraocular fluid movement, and renal transport - Clinical applications are discussed throughout the book, providing practical applications for the concepts discussed.
Download or read book The Fluid Mechanics of Large Blood Vessels written by T. J. Pedley and published by Cambridge University Press. This book was released on 1980-04-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the Adam's Prize essay of 1975-76, this monograph gives a thorough account of the anatomy and physiology of large blood vessels with explanations of experimental methods and the need for mathematical analysis of fluid mechanics.
Download or read book The Physics of Pulsatile Flow written by M. Zamir and published by Springer Science & Business Media. This book was released on 2000-02-25 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: A presentation of the most elementary form of pulsatile flow as an important prerequisite for the study of other flow applications in biological systems. The book provides in a single source a complete treatment of the fluid dynamics of flow with the required mathematics and emphasis on the basis mechanics. The style and level of this book make it accessible to students and researchers in biophysics, biology, medicine, bioengineering and applied mathematics working in theoretical and clinical work on the cardiovascular system, as well as in the design of new instrumentation, medical imaging systems, and artificial organs. With problems and exercises.
Download or read book Biofluid Mechanics written by Krishnan B. Chandran and published by CRC Press. This book was released on 2012-02-24 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for senior undergraduate or first-year graduate students in biomedical engineering, Biofluid Mechanics: The Human Circulation, Second Edition teaches students how fluid mechanics is applied to the study of the human circulatory system. Reflecting changes in the field since the publication of its predecessor, this second edition has been extensively revised and updated. New to the Second Edition Improved figures and additional examples More problems at the end of each chapter A chapter on the computational fluid dynamic analysis of the human circulation, which reflects the rapidly increasing use of computational simulations in research and clinical arenas Drawing on each author’s experience teaching courses on cardiovascular fluid mechanics, the book begins with introductory material on fluid and solid mechanics as well as a review of cardiovascular physiology pertinent to the topics covered in subsequent chapters. The authors then discuss fluid mechanics in the human circulation, primarily applied to blood flow at the arterial level. They also cover vascular implants and measurements in the cardiovascular system.
Download or read book Angiology in Practice written by A-M. Salmasi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arterial and venous diseases are major causes of morbidity and mortality in most of the world, especially in the western hemisphere. Not only of interest to angiologists, these illnesses are also of concern to most physicians in various fields ranging from cardiology, general medicine and cardiovascular surgery to physiology, pathology and clinical pharmacology. Specialists in diabetes, hypertension and epidemiology find these illnesses as challenging in their own fields of interest due to the gross interrelation of these diseases with their specialities. This book of 35 chapters contains an up-to-date discussion of various arterial and venous illnesses presenting major clinical applications ranging from basic pathology, haemodynamics and haemorheology to clinical features and management. Special attention has also been paid to epidemiology and prevention, discussing all the issues concerned. A special section on vascular emergency has also been included, thereby extending its usefulness to physicians and surgeons working in accident and emergency units.
Download or read book Fluid Mechanics for Cardiovascular Engineering written by Gianni Pedrizzetti and published by Springer Nature. This book was released on 2021-10-28 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a guiding thread between the distant fields of fluid mechanics and clinical cardiology. Well rooted in the science of fluid dynamics, it drives the reader across progressively more realistic scenarios up to the complexity of routine medical applications. Based on the author’s 25 years of collaborations with cardiologists, it helps engineers learn communicating with clinicians, yet maintaining the rigor of scientific disciplines. This book starts with a description of the fundamental elements of fluid dynamics in large blood vessels. This is achieved by introducing a rigorous physical background accompanied by examples applied to the circulation, and by presenting classic and recent results related to the application of fluid dynamics to the cardiovascular physiology. It then explores more advanced topics for a physics-based understanding of phenomena effectively encountered in clinical cardiology. It stands as an ideal learning resource for physicists and engineers working in cardiovascular fluid dynamics, industry engineers working on biomedical/cardiovascular technology, and students in bio-fluid dynamics. Written with a concise style, this textbook is accessible to a broad readership, including students, physical scientists and engineers, offering an entry point into this multi-disciplinary field. It includes key concepts exemplified by illustrations using cutting-edge imaging, references to modelling and measurement technologies, and includes unique original insights.
Download or read book Biofluid Mechanics written by Krishnan B. Chandran and published by CRC Press. This book was released on 2006-11-15 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part medicine, part biology, and part engineering, biomedicine and bioengineering are by their nature hybrid disciplines. To make these disciplines work, engineers need to speak "medicine," and clinicians and scientists need to speak "engineering." Building a bridge between these two worlds, Biofluid Mechanics: The Human Circulation integrates fluid and solid mechanics relationships and cardiovascular physiology. The book focuses on blood rheology, steady and unsteady flow models in the arterial circulation, and fluid mechanics through native heart valves. The authors delineate the relationship between fluid mechanics and the development of arterial diseases in the coronary, carotid, and ileo-femoral arteries. They go on to elucidate methods used to evaluate the design of circulatory implants such as artificial heart valves, stents, and vascular grafts. The book covers design requirements for the development of an ideal artificial valve, including a discussion of the currently available mechanical and bioprosthetic valves. It concludes with a detailed description of common fluid mechanical measurements used for diagnosing arterial and valvular diseases as well as research studies that examine the possible interactions between hemodynamics and arterial disease. Drawing on a wide range of material, the authors cover both theory and practical applications. The book breaks down fluid mechanics into key definitions and specific properties and then uses these pieces to construct a solid foundation for analyzing biofluid mechanics in both normal and diseased conditions.
Download or read book Vital Circuits written by Steven Vogel and published by Oxford University Press, USA. This book was released on 1993 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why does dust collect on the blades of a fan? Why should you wear support hose on a long airplane flight? Vogel ranges across physics, fluid mechanics, and chemistry to show how an enormous system of pumps and pipes works to keep the human body functioning. Anyone curious about the workings of the body will want to read this book. 64 line drawings.
Download or read book Vortex Formation in the Cardiovascular System written by Arash Kheradvar and published by Springer Science & Business Media. This book was released on 2012-02-01 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vortex Formation in the Cardiovascular System will recapitulate the current knowledge about the vortex formation in the cardiovascular system, from mechanics to cardiology. This can facilitate the interaction between basic scientists and clinicians on the topic of the circulatory system. The book begins with a synopsis of the fundamentals aspects of fluid mechanics to give the reader the essential background to address the proceeding chapters. Then the fundamental elements of vortex dynamics will be discussed, explaining the conditions for their formation and the rules governing their dynamics. The main equations are accompanied by mathematical models. Cardiovascular vortex formation is first analyzed in physiological, healthy conditions in the heart chambers and in the large arterial vessels. The analysis is initially presented with an intuitive appeal grounded on the physical phenomena and a focus on its clinical significance.In the proceeding chapters, the knowledge gained from either clinical or basic science literature will be discussed. The corresponding mathematical elements will finally be presented to ensure the adequate diligence. The proceeding chapters ensue to the analysis of pathological conditions, when the reader may have developed the ability to recognize normal from abnormal vortex formation phenomenon. Pathological vortex formation represents vortices that develop at sites where normally laminar flow should exist, e.g. stenosis and aneurisms. This analysis naturally leads to the interaction of vortices due to the surgical procedures with respect to prediction of changes in vortex formation. The existing techniques, from medical imaging to numerical simulations, to explore vortex flows in the cardiovascular systems will also be described. The presentations are accompanied by the mathematical definitions can that be understandable for reader without the advanced mathematical background, while an interested reader with more advanced knowledge in mathematics can be referred to references for further quantitative analyses. The book pursues the objective to transfer the fundamental vortex formation phenomena with application to the cardiovascular system to the reader. This book will be a valuable support for physicians in the evaluation of vortex influence on diagnosis and therapeutic choices. At the same time, the book will provide the rigorous information for research scientists, either from medicine and mechanics, working on the cardiovascular circulation incurring with the physics of vortex dynamics.
Download or read book Biofluid Mechanics written by Ali Ostadfar and published by Academic Press. This book was released on 2016-06-03 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biofluid Mechanics is a throrough reference to the entire field. Written with engineers and clinicians in mind, this book covers physiology and the engineering aspects of biofluids. Effectively bridging the gap between engineers' and clinicians' knowledge bases, the text provides information on physiology for engineers and information on the engineering side of biofluid mechanics for clinicians. Clinical applications of fluid mechanics principles to fluid flows throughout the body are included in each chapter. All engineering concepts and equations are developed within a biological context, together with computational simulation examples as well. Content covered includes; engineering models of human blood, blood rheology in the circulation system and problems in human organs and their side effects on biomechanics of the cardiovascular system. The information contained in this book on biofluid principles is core to bioengineering and medical sciences. - Comprehensive coverage of the entire biofluid mechanics subject provides you with an all in one reference, eliminating the need to collate information from different sources - Each chapter covers principles, needs, problems, and solutions in order to help you identify potential problems and employ solutions - Provides a novel breakdown of fluid flow by organ system, and a quick and focused reference for clinicians
Download or read book Biomechanics written by Y.C. Fung and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of blood circulation is the oldest and most advanced branch of biomechanics, with roots extending back to Huangti and Aristotle, and with contributions from Galileo, Santori, Descartes, Borelli, Harvey, Euler, Hales, Poiseuille, Helmholtz, and many others. It represents a major part of humanity's concept of itself. This book presents selected topics of this great body of ideas from a historical perspective, binding important experiments together with mathematical threads. The objectives and scope of this book remain the same as in the first edition: to present a treatment of circulatory biomechanics from the stand points of engineering, physiology, and medical science, and to develop the subject through a sequence of problems and examples. The name is changed from Biodynamics: Circulation to Biomechanics: Circulation to unify the book with its sister volumes, Biomechanics: Mechanical Properties of Living Tissues, and Biomechanics: Motion, Flow, Stress, and Growth. The major changes made in the new edition are the following: When the first edition went to press in 1984, the question of residual stress in the heart was raised for the first time, and the lung was the only organ analyzed on the basis of solid morphologic data and constitutive equations. The detailed analysis of blood flow in the lung had been done, but the physiological validation experiments had not yet been completed.
Download or read book Flow Dependent Regulation of Vascular Function written by John A Bevan and published by Springer. This book was released on 2013-05-27 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exactly sixty years ago Schretzenmayer provided the first experimental proof that changes in blood ftow can affect the diameter oflarge arteries. Since then, support has been growing for the idea that intraluminal blood ftow plays an important role in regulating not only the tone of blood vessels, but also their caliber and structure. Investigations of the&e phenomena have been given a strong impetus by the discovery that the endothelium can modulate the tone of underlying vascular smooth muscle via the release of a number of vasoactive substances. Investigators often diverge in their opinions regarding the nature of the vascular wall response to blood ftow and the mechanisms involved. This book is the first summary of our state of knowledge and the nature of the research carried out on ftow-related changes. Early chapters review involvement of shear-stress-dependent events in the circulation as a whole. They cover the biophysical principles of ftuid transport, the cellular signal transduction path ways, and the molecular biology and biochemistry of ftow-induced changes in endothelial cells. Later chapters provide an in-depth summary of the regula tion of vascular muscle tone by ftow. They include historical perspectives, evi dence that ftow-induced vasodilation is primarily endothelium-dependent and that it can induce constriction, and details on ftow-dependent regulation in regional vascular beds. Several chapters emphasize the endothelial activation by shear stress and its importance in the control offtow in the microcirculation.
Download or read book Cardiovascular Biomechanics written by Peter R. Hoskins and published by Springer. This book was released on 2017-02-16 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.
Download or read book Circulation in the Coastal Ocean written by G.T. Csanady and published by Springer Science & Business Media. This book was released on 1982-09-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: For some time there has existed an extensive theoretical literature relating to tides on continental shelves and also to the behavior of estuaries. Much less attention was traditionally paid to the dynamics of longer term, larger scale motions (those which are usually described as circulation') over continental shelves or in enclosed shallow seas such as the North American Great Lakes. This is no longer the case: spurred on by other disciplines, notably biological oceanography, and by public concern with the environment, the physical science of the coastal ocean has made giant strides during the last two decades or so. Today, it is probably fair to say that coastal ocean physics has come of age as a deduc tive quantitative science. A well developed body of theoretical models exist, based on the equations of fluid motion, which have been related to observed currents, sea level variations, water properties, etc. Quantitative parameters required in using the models to predict e.g. the effects of wind or of freshwater influx on coastal currents can be estimated within reasonable bounds of error. While much remains to be learned, and many exciting discoveries presumably await us in the future, the time seems appropriate to summarize those aspects of coastal ocean dynamics relevant to 'circulation' or long term motion.