EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Radiative Transfer

    Book Details:
  • Author : Subrahmanyan Chandrasekhar
  • Publisher : Courier Corporation
  • Release : 2013-04-15
  • ISBN : 0486318451
  • Pages : 418 pages

Download or read book Radiative Transfer written by Subrahmanyan Chandrasekhar and published by Courier Corporation. This book was released on 2013-04-15 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book by a Nobel Laureate provides the foundation for analysis of stellar atmospheres, planetary illumination, and sky radiation. Suitable for students and professionals in physics, nuclear physics, astrophysics, and atmospheric studies. 1950 edition.

Book The Mathematics of Radiative Transfer

Download or read book The Mathematics of Radiative Transfer written by I. W. Busbridge and published by . This book was released on 1960 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiative Transfer in Curved Media

Download or read book Radiative Transfer in Curved Media written by K. K. Sen and published by World Scientific. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the methods described in this book can be used with cosmetic modifications to solve transfer problems of greater complexity. All attempts have been made to make the book self-contained.

Book Radiative Transfer

Download or read book Radiative Transfer written by Subrahmanyan Chandrasekhar and published by . This book was released on 1960 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods in Multidimensional Radiative Transfer

Download or read book Numerical Methods in Multidimensional Radiative Transfer written by Guido Kanschat and published by Springer Science & Business Media. This book was released on 2008-12-24 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, radiative transfer has been the domain of astrophysicists and climatologists. In nuclear technology one has been dealing with the ana- gous equations of neutron transport. In recent years, applications of radiative transferincombustionmachinedesignandinmedicinebecamemoreandmore important. In all these disciplines one uses the radiative transfer equation to model the formation of the radiation ?eld and its propagation. For slabs and spheres e?ective algorithms for the solution of the transfer equation have been ava- able for quite some time. In addition, the analysis of the equation is quite well developed. Unfortunately, in many modern applications the approximation of a 1D geometry is no longer adequate and one has to consider the full 3D dependencies. This makes the modeling immensely more intricate. The main reasons for the di?culties result from the fact that not only the dimension of the geometric space has to be increased but one also has to employ two angle variables (instead of one) and very often one has to consider frequency coupling (due to motion or redistribution in spectral lines). In actual cal- lations this leads to extremely large matrices which, in addition, are usually badly conditioned and therefore require special care. Analytical solutions are not available except for very special cases. Although radiative transfer problems are interesting also from a ma- ematical point of view, mathematicians have largely neglected the transfer equation for a long time.

Book The Mathematics of Radiative Transfer

Download or read book The Mathematics of Radiative Transfer written by John Desmond Peter and published by . This book was released on 1960 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiative Transfer in Moving Media

Download or read book Radiative Transfer in Moving Media written by K.K. Sen and published by Springer. This book was released on 1998-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advancement of observational techniques has led to the discovery of a large number of stars exhibiting complex spectral structures. This necessitates the search for new methods to study the radiative transfer in such stars. This book presents mathematical methodologies developed for solving radiation transfer problems in moving media and stellar atmospheres.

Book Radiative Transfer on Discrete Spaces

Download or read book Radiative Transfer on Discrete Spaces written by Rudolph W. Preisendorfer and published by Elsevier. This book was released on 2014-07-18 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles. Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative transfer theory in three ways. Other chapters consider the development of discrete radiative transfer theory from the local interaction principle. This book discusses as well the development of continuous radiative transfer theory. The final chapter deals with the task of formulating a mathematical foundation for radiative transfer theory. This book is a valuable resource for researchers in the field of radiative transfer theory whose interests transcend the physical and numerical aspects of the interaction of light with matter.

Book Radiative Transfer

    Book Details:
  • Author : Hélène Frisch
  • Publisher : Springer Nature
  • Release : 2022-05-26
  • ISBN : 3030952479
  • Pages : 611 pages

Download or read book Radiative Transfer written by Hélène Frisch and published by Springer Nature. This book was released on 2022-05-26 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener–Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.

Book Radiation Transfer

    Book Details:
  • Author : Apresyan
  • Publisher : Routledge
  • Release : 2019-07-16
  • ISBN : 1351420070
  • Pages : 482 pages

Download or read book Radiation Transfer written by Apresyan and published by Routledge. This book was released on 2019-07-16 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors expound on non-traditional phenomena for transfer theory, which are nevertheless of considerable interest in wave measurements, and bring the advances of transfer theory as close as possible to the practical needs of those working in all areas of wave physics. The book opens with a historical overview of the topic, then moves on to examine the phenomenological theory of radiative transport, blending traditional theory with original ideas. The transport equation is derived from first principles, and the ensuing discussion of the diffraction content of the transport equation and non-classical radiometry is illustrated by practical examples from various fields of physics. Popular techniques of solving the transport equation are discussed, paying particular attention to wave physics and computing the coherence function. The book also examines various problems which are no longer covered by the traditional radiative transfer theory, such as enhanced backscattering and weak localization phenomena, nonlinear transport problems and kinetic equations for waves. This monograph bridges the gap between the simple power balance description in radiative transfer theory and modern coherence theory. It will be of interest to researchers and professionals working across a wide range of fields from optics, acoustics and radar theory to astrophysics, radioastronomy and remote sensing, as well as to students in these areas.

Book Radiative Transfer in Curved Media

Download or read book Radiative Transfer in Curved Media written by K. K. Sen and published by World Scientific. This book was released on 1990 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the methods described in this book can be used with cosmetic modifications to solve transfer problems of greater complexity. All attempts have been made to make the book self-contained.

Book QED

    QED

    Book Details:
  • Author : Richard P. Feynman
  • Publisher : Princeton University Press
  • Release : 2014-10-26
  • ISBN : 140084746X
  • Pages : 193 pages

Download or read book QED written by Richard P. Feynman and published by Princeton University Press. This book was released on 2014-10-26 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.

Book Radiative Transfer in Scattering and Absorbing Atmospheres

Download or read book Radiative Transfer in Scattering and Absorbing Atmospheres written by Jacqueline Lenoble and published by . This book was released on 1985 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Transfer of Spectral Line Radiation

Download or read book The Transfer of Spectral Line Radiation written by C. J. Cannon and published by Cambridge University Press. This book was released on 2012-01-26 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1985, this monograph describes the interaction of radiation with plasma. Using an approach that is particularly relevant to the interpretation of data from laboratory plasmas or stellar atmospheres, the author sets out the physics and mathematics of the interaction of photons with atoms, molecules, ions and electrons. The emphasis throughout is on relating the formal mathematics to the real world of observable properties and interpretation. The equation of radiative transfer for a two-level atom is solved exactly by two distinct methods. Techniques for solving more realistic problems are then presented. This leads to the main thrust of the book which gives a detailed analysis of the matter - radiation interaction.

Book The Equations of Radiation Hydrodynamics

Download or read book The Equations of Radiation Hydrodynamics written by Gerald C. Pomraning and published by Courier Corporation. This book was released on 2005-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text examines propagation of thermal radiation through a fluid and its effects on the hydrodynamics of fluid motion. Topics include approximate formulations of radiative transfer and relativistic effects of fluid motion; microscopic physics associated with the equation of transfer; inverse Compton scattering; and hydrodynamic description of fluid. 1973 edition.

Book Atmospheric Radiative Transfer

Download or read book Atmospheric Radiative Transfer written by Jacqueline Lenoble and published by . This book was released on 1993 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basis of atmospheric radiative transfer for graduate students, as well as for scientists or engineers who want to start work in this domain. It supposes that the reader has reached a general college level in mathematics & physics. The first part covers the theory of radiative energy transfer & is of interest for a larger audience than only the atmospheric scientists. After carefully defining the various quantities characterizing radiation energy & its interaction with matter, the equation of radiative transfer is established & the laws of blackbody emission reviewed. One chapter presents the detection of radiative energy. The next chapters review the problems of quantitative spectroscopy & the transfer of energy in an absorbing & emitting medium. Finally, the laws of scattering are presented & the transfer of radiation in a scattering medium, including polarization, is analyzed.

Book Non LTE Radiative Transfer in the Atmosphere

Download or read book Non LTE Radiative Transfer in the Atmosphere written by Manuel López-Puertas and published by World Scientific. This book was released on 2001 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.