Download or read book The Mathematical Theory of Infectious Diseases written by N. T. J. Bailey and published by . This book was released on 1975 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Mathematical Modeling of Infectious Diseases written by Michael Y. Li and published by Springer. This book was released on 2018-01-30 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Download or read book Mathematical Epidemiology written by Fred Brauer and published by Springer Science & Business Media. This book was released on 2008-04-30 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
Download or read book Mathematical Understanding of Infectious Disease Dynamics written by Stefan Ma and published by World Scientific. This book was released on 2009 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Original book with a comprehensive collection of many significant topics of the frontiers in applied presentation of many epidemic models with many real-life examples. presents an integration of interesting ideas from the well-mixed fields of statistics and mathematics. A valuable resource for researchers in wide range of disciplines to solve problems of practical interest.
Download or read book Mathematical Tools for Understanding Infectious Disease Dynamics written by Odo Diekmann and published by Princeton University Press. This book was released on 2012-11-18 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout
Download or read book Mathematical Epidemiology of Infectious Diseases written by O. Diekmann and published by John Wiley & Sons. This book was released on 2000-04-07 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation O. Diekmann University of Utrecht, The Netherlands J. A. P. Heesterbeek Centre for Biometry Wageningen, The Netherlands The mathematical modelling of epidemics in populations is a vast and important area of study. It is about translating biological assumptions into mathematics, about mathematical analysis aided by interpretation and about obtaining insight into epidemic phenomena when translating mathematical results back into population biology. Model assumptions are formulated in terms of, usually stochastic, behaviour of individuals and then the resulting phenomena, at the population level, are unravelled. Conceptual clarity is attained, assumptions are stated clearly, hidden working hypotheses are attained and mechanistic links between different observables are exposed. Features: * Model construction, analysis and interpretation receive detailed attention * Uniquely covers both deterministic and stochastic viewpoints * Examples of applications given throughout * Extensive coverage of the latest research into the mathematical modelling of epidemics of infectious diseases * Provides a solid foundation of modelling skills The reader will learn to translate, model, analyse and interpret, with the help of the numerous exercises. In literally working through this text, the reader acquires modelling skills that are also valuable outside of epidemiology, certainly within population dynamics, but even beyond that. In addition, the reader receives training in mathematical argumentation. The text is aimed at applied mathematicians with an interest in population biology and epidemiology, at theoretical biologists and epidemiologists. Previous exposure to epidemic concepts is not required, as all background information is given. The book is primarily aimed at self-study and ideally suited for small discussion groups, or for use as a course text.
Download or read book An Introduction to Infectious Disease Modelling written by Emilia Vynnycky and published by Oxford University Press, USA. This book was released on 2010-05-13 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are increasingly used to guide public health policy decisions and explore questions in infectious disease control. Written for readers without advanced mathematical skills, this book provides an introduction to this area.
Download or read book Modeling Infectious Diseases in Humans and Animals written by Matt J. Keeling and published by Princeton University Press. This book was released on 2011-09-19 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control
Download or read book A Historical Introduction to Mathematical Modeling of Infectious Diseases written by Ivo M. Foppa and published by Academic Press. This book was released on 2016-10-18 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology offers step-by-step help on how to navigate the important historical papers on the subject, beginning in the 18th century. The book carefully, and critically, guides the reader through seminal writings that helped revolutionize the field. With pointed questions, prompts, and analysis, this book helps the non-mathematician develop their own perspective, relying purely on a basic knowledge of algebra, calculus, and statistics. By learning from the important moments in the field, from its conception to the 21st century, it enables readers to mature into competent practitioners of epidemiologic modeling. - Presents a refreshing and in-depth look at key historical works of mathematical epidemiology - Provides all the basic knowledge of mathematics readers need in order to understand the fundamentals of mathematical modeling of infectious diseases - Includes questions, prompts, and answers to help apply historical solutions to modern day problems
Download or read book Infectious Disease Modeling written by Xinzhi Liu and published by Springer. This book was released on 2017-02-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
Download or read book Infectious Diseases of Humans written by Roy M. Anderson and published by Oxford University Press. This book was released on 1991 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with infectious diseases -- viral, bacterial, protozoan and helminth -- in terms of the dynamics of their interaction with host populations. The book combines mathematical models with extensive use of epidemiological and other data. This analytic framework is highly useful for the evaluation of public health strategies aimed at controlling or eradicating particular infections. Such a framework is increasingly important in light of the widespread concern for primary health care programs aimed at such diseases as measles, malaria, river blindness, sleeping sickness, and schistosomiasis, and the advent of AIDS/HIV and other emerging viruses. Throughout the book, the mathematics is used as a tool for thinking clearly about fundamental and applied problems having to do with infectious diseases. The book is divided into two parts, one dealing with microparasites (viruses, bacteria and protozoans) and the other with macroparasites (helminths and parasitic arthropods). Each part begins with simple models, developed in a biologically intuitive way, and then goes on to develop more complicated and realistic models as tools for public health planning. The book synthesizes previous work in this rapidly growing field (much of which is scattered between the ecological and the medical literature) with a good deal of new material.
Download or read book Modeling Infectious Disease Parameters Based on Serological and Social Contact Data written by Niel Hens and published by Springer Science & Business Media. This book was released on 2012-10-24 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force of infection. The force of infection reflects the degree of contact with potential for transmission between infected and susceptible individuals. The mathematical relation between the force of infection and effective contact patterns is generally assumed to be subjected to the mass action principle, which yields the necessary information to estimate the basic reproduction number, another key parameter in infectious disease epidemiology. It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt University) and the Centre for the Evaluation of Vaccination and the Centre for Health Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 years. This book demonstrates the past and current research activities of these institutes and can be considered to be a milestone in this collaboration. This book is focused on the application of modern statistical methods and models to estimate infectious disease parameters. We want to provide the readers with software guidance, such as R packages, and with data, as far as they can be made publicly available.
Download or read book Mathematical Models in Epidemiology written by Fred Brauer and published by Springer Nature. This book was released on 2019-10-10 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.
Download or read book Modern Infectious Disease Epidemiology written by Alexander Krämer and published by Springer Science & Business Media. This book was released on 2010-01-23 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardly a day goes by without news headlines concerning infectious disease threats. Currently the spectre of a pandemic of influenza A|H1N1 is raising its head, and heated debates are taking place about the pro’s and con’s of vaccinating young girls against human papilloma virus. For an evidence-based and responsible communication of infectious disease topics to avoid misunderstandings and overreaction of the public, we need solid scientific knowledge and an understanding of all aspects of infectious diseases and their control. The aim of our book is to present the reader with the general picture and the main ideas of the subject. The book introduces the reader to methodological aspects of epidemiology that are specific for infectious diseases and provides insight into the epidemiology of some classes of infectious diseases characterized by their main modes of transmission. This choice of topics bridges the gap between scientific research on the clinical, biological, mathematical, social and economic aspects of infectious diseases and their applications in public health. The book will help the reader to understand the impact of infectious diseases on modern society and the instruments that policy makers have at their disposal to deal with these challenges. It is written for students of the health sciences, both of curative medicine and public health, and for experts that are active in these and related domains, and it may be of interest for the educated layman since the technical level is kept relatively low.
Download or read book Microbial Threats to Health written by Institute of Medicine and published by National Academies Press. This book was released on 2003-08-25 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infectious diseases are a global hazard that puts every nation and every person at risk. The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans. Indeed, a majority of countries recently identified the spread of infectious disease as the greatest global problem they confront. Throughout history, humans have struggled to control both the causes and consequences of infectious diseases and we will continue to do so into the foreseeable future. Following up on a high-profile 1992 report from the Institute of Medicine, Microbial Threats to Health examines the current state of knowledge and policy pertaining to emerging and re-emerging infectious diseases from around the globe. It examines the spectrum of microbial threats, factors in disease emergence, and the ultimate capacity of the United States to meet the challenges posed by microbial threats to human health. From the impact of war or technology on disease emergence to the development of enhanced disease surveillance and vaccine strategies, Microbial Threats to Health contains valuable information for researchers, students, health care providers, policymakers, public health officials. and the interested public.
Download or read book Mathematical Modelling of Immune Response in Infectious Diseases written by Guri I. Marchuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning his work on the monograph to be published in English, this author tried to present more or less general notions of the possibilities of mathematics in the new and rapidly developing science of infectious immunology, describing the processes of an organism's defence against antigen invasions. The results presented in this monograph are based on the construc tion and application of closed models of immune response to infections which makes it possible to approach problems of optimizing the treat ment of chronic and hypertoxic forms of diseases. The author, being a mathematician, had creative long-Iasting con tacts with immunologists, geneticist, biologists, and clinicians. As far back as 1976 it resulted in the organization of a special seminar in the Computing Center of Siberian Branch of the USSR Academy of Sci ences on mathematical models in immunology. The seminar attracted the attention of a wide circle of leading specialists in various fields of science. All these made it possible to approach, from a more or less united stand point, the construction of models of immune response, the mathematical description of the models, and interpretation of results.
Download or read book Mathematical Structures of Epidemic Systems written by Vincenzo Capasso and published by Springer Science & Business Media. This book was released on 2008-08-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .