Download or read book The Material Point Method for Geotechnical Engineering written by James Fern and published by CRC Press. This book was released on 2019-01-30 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.
Download or read book The Material Point Method written by Xiong Zhang and published by Academic Press. This book was released on 2016-10-26 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems. - Provides a user's guide and several numerical examples of the MPM3D-F90 code that can be downloaded from a website - Presents models that describe different types of material behaviors, with a focus on extreme events. - Includes applications of MPM and its extensions in extreme events, such as transient crack propagation, impact/penetration, blast, fluid-structure interaction, and biomechanical responses to extreme loading
Download or read book Advances in Applied Mechanics written by Daniel S. Balint and published by Academic Press. This book was released on 2020-10-23 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mechanics, Volume 53 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on Phase field modelling of fracture, Advanced geometry representations and tools for microstructural and multiscale modelling, The material point method: the past and the future, From Experimental Modeling of Shotcrete to Large Scale Numerical Simulations of Tunneling, and Material point method after 25 years: theory, implementation, applications. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Applied Mechanics series
Download or read book Smoothed Particle Hydrodynamics written by Gui-Rong Liu and published by World Scientific. This book was released on 2003 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.
Download or read book Advances in Applied Mechanics written by Stéphane P.A. Bordas and published by Academic Press. This book was released on 2021-11-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mechanics, Volume 54 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on Advanced geometry representations and tools for microstructural and multiscale modelling, Material Point Method: overview and challenges ahead, From Experimental Modeling of Shotcrete to Numerical Simulations of Tunneling, Mechanics of Hydrogel-Based Bioprinting: From 3D to 4D, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Applied Mechanics series
Download or read book Physics based Animation written by Kenny Erleben and published by . This book was released on 2005 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: The booming computer games and animated movie industries continue to drive the graphics community's seemingly insatiable search for increased realism, believability, ad speed. To achieve the quality expected by audiences of today's games and movies, programmers need to understand and implement physics-based animation. To provide this understanding, this book is written to teach students and practitioners and theory behind the mathematical models and techniques required for physics-based animation. It does not teach the basic principles of animation, but rather how to transform theoretical techniques into practical skills. It details how the mathematical models are derived from physical and mathematical principles, and explains how these mathematical models are solved in an efficient, robust, and stable manner with a computer. This impressive and comprehensive volume covers all the issues involved in physics-based animation, including collision detection, geometry, mechanics, differential equations, matrices, quaternions, and more. There is excellent coverage of collision detection algorithms and a detailed overview of a physics system. In addition, numerous examples are provided along with detailed pseudo code for most of the algorithms. This book is ideal for students of animation, researchers in the field, and professionals working in the games and movie industries. Topics Covered: * The Kinematics: Articulated Figures, Forward and Inverse Kinematics, Motion Interpolation * Multibody Animation: Particle Systems, Continuum Models with Finite Differences, the Finite Element Method, Computational Fluid Dynamics * Collision Detection: Broad and Narrow Phase Collision Detection, Contact Determination, Bounding Volume Hierarchies, Feature-and Volume-Based Algorithms
Download or read book Fluid Simulation for Computer Graphics written by Robert Bridson and published by CRC Press. This book was released on 2015-09-18 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction, the second edition of Fluid Simulation for Computer Graphics shows you how to animate fully three-dimensional incompressible flow. It covers all the aspects of fluid simulation, from the mathematics and algorithms to implementation, while making revisions and updates to reflect changes in the field since the first edition. Highlights of the Second Edition New chapters on level sets and vortex methods Emphasizes hybrid particle–voxel methods, now the industry standard approach Covers the latest algorithms and techniques, including: fluid surface reconstruction from particles; accurate, viscous free surfaces for buckling, coiling, and rotating liquids; and enhanced turbulence for smoke animation Adds new discussions on meshing, particles, and vortex methods The book changes the order of topics as they appeared in the first edition to make more sense when reading the first time through. It also contains several updates by distilling author Robert Bridson’s experience in the visual effects industry to highlight the most important points in fluid simulation. It gives you an understanding of how the components of fluid simulation work as well as the tools for creating your own animations.
Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Download or read book Nonlinear Continuum Mechanics for Finite Element Analysis written by Javier Bonet and published by Cambridge University Press. This book was released on 1997-09-28 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified treatment of nonlinear continuum analysis and finite element techniques.
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.
Download or read book Finite Element Method Simulation of 3D Deformable Solids written by Eftychios Sifakis and published by Springer Nature. This book was released on 2022-06-01 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a practical guide to simulation of 3D deformable solids using the Finite Element Method (FEM). It reviews a number of topics related to the theory and implementation of FEM approaches: measures of deformation, constitutive laws of nonlinear materials, tetrahedral discretizations, and model reduction techniques for real-time simulation. Simulations of deformable solids are important in many applications in computer graphics, including film special effects, computer games, and virtual surgery. The Finite Element Method has become a popular tool in many such applications. Variants of FEM catering to both offline and real-time simulation have had a mature presence in computer graphics literature. This book is designed for readers familiar with numerical simulation in computer graphics, who would like to obtain a cohesive picture of the various FEM simulation methods available, their strengths and weaknesses, and their applicability in various simulation scenarios. The book is also a practical implementation guide for the visual effects developer, offering a lean yet adequate synopsis of the underlying mathematical theory. Chapter 1 introduces the quantitative descriptions used to capture the deformation of elastic solids, the concept of strain energy, and discusses how force and stress result as a response to deformation. Chapter 2 reviews a number of constitutive models, i.e., analytical laws linking deformation to the resulting force that has successfully been used in various graphics-oriented simulation tasks. Chapter 3 summarizes how deformation and force can be computed discretely on a tetrahedral mesh, and how an implicit integrator can be structured around this discretization. Finally, chapter 4 presents the state of the art in model reduction techniques for real-time FEM solid simulation and discusses which techniques are suitable for which applications. Topics discussed in this chapter include linear modal analysis, modal warping, subspace simulation, and domain decomposition.
Download or read book Applied Mechanics of Solids written by Allan F. Bower and published by CRC Press. This book was released on 2009-10-05 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Download or read book The Combined Finite Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.
Download or read book Simulation Methods for Polymers written by Michael Kotelyanskii and published by CRC Press. This book was released on 2004-03-01 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Download or read book Fluid Mechanics and the SPH Method written by Damien Violeau and published by Oxford University Press. This book was released on 2012-05-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the SPH method for fluid modelling from a theoretical and applied viewpoint. It explains the foundations of the method, from physical principles, and will help researchers, students, and engineers to understand how the method should be used and why it works well.