EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Lorenz Equations

    Book Details:
  • Author : Colin Sparrow
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461257670
  • Pages : 280 pages

Download or read book The Lorenz Equations written by Colin Sparrow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The equations which we are going to study in these notes were first presented in 1963 by E. N. Lorenz. They define a three-dimensional system of ordinary differential equations that depends on three real positive parameters. As we vary the parameters, we change the behaviour of the flow determined by the equations. For some parameter values, numerically computed solutions of the equations oscillate, apparently forever, in the pseudo-random way we now call "chaotic"; this is the main reason for the immense amount of interest generated by the equations in the eighteen years since Lorenz first presented them. In addition, there are some parameter values for which we see "preturbulence", a phenomenon in which trajectories oscillate chaotically for long periods of time before finally settling down to stable stationary or stable periodic behaviour, others in which we see "intermittent chaos", where trajectories alternate be tween chaotic and apparently stable periodic behaviours, and yet others in which we see "noisy periodicity", where trajectories appear chaotic though they stay very close to a non-stable periodic orbit. Though the Lorenz equations were not much studied in the years be tween 1963 and 1975, the number of man, woman, and computer hours spent on them in recent years - since they came to the general attention of mathematicians and other researchers - must be truly immense.

Book The Lorenz Equations

    Book Details:
  • Author : Colin Sparrow
  • Publisher :
  • Release : 1982-12-01
  • ISBN : 9781461257684
  • Pages : 284 pages

Download or read book The Lorenz Equations written by Colin Sparrow and published by . This book was released on 1982-12-01 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Computing with MATLAB

Download or read book Numerical Computing with MATLAB written by Cleve B. Moler and published by SIAM. This book was released on 2010-08-12 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

Book The Essence Of Chaos

    Book Details:
  • Author : Flavio Lorenzelli
  • Publisher : CRC Press
  • Release : 2003-09-02
  • ISBN : 0203214587
  • Pages : 236 pages

Download or read book The Essence Of Chaos written by Flavio Lorenzelli and published by CRC Press. This book was released on 2003-09-02 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.

Book Differential Equations  Dynamical Systems  and an Introduction to Chaos

Download or read book Differential Equations Dynamical Systems and an Introduction to Chaos written by Morris W. Hirsch and published by Academic Press. This book was released on 2004 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Book The Lorenz Attractor Exists

Download or read book The Lorenz Attractor Exists written by Warwick Tucker and published by . This book was released on 1998 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book Galileo Unbound

    Book Details:
  • Author : David D. Nolte
  • Publisher : Oxford University Press
  • Release : 2018-07-12
  • ISBN : 0192528505
  • Pages : 384 pages

Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Book Nonlinear Dynamics and Chaos

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Book Elegant Chaos  Algebraically Simple Chaotic Flows

Download or read book Elegant Chaos Algebraically Simple Chaotic Flows written by Julien Clinton Sprott and published by World Scientific. This book was released on 2010-03-22 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rössler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos.No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.

Book Chaos

    Book Details:
  • Author : Kathleen Alligood
  • Publisher : Springer
  • Release : 2012-12-06
  • ISBN : 3642592813
  • Pages : 620 pages

Download or read book Chaos written by Kathleen Alligood and published by Springer. This book was released on 2012-12-06 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Book The Theory of Chaotic Attractors

Download or read book The Theory of Chaotic Attractors written by Brian R. Hunt and published by Springer Science & Business Media. This book was released on 2004-01-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.

Book From Nonlinear Dynamics to Trigonometry s Magic

Download or read book From Nonlinear Dynamics to Trigonometry s Magic written by Belkacem Meziane and published by Cambridge Scholars Publishing. This book was released on 2022-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The book develops new methodologies to unravel the mathematics of nonlinear dynamics using simple trigonometry. It offers a complete tutorial for neophytes, as well as experts, in nonlinear dynamics, as it examines, using an original and simple approach, the fundamental example of Chaos, the Lorenz-Haken equations, with high order trigonometry. The book will appeal to physicists, mathematicians, and graduate and undergraduate students alike.

Book Differential Equations and Linear Algebra

Download or read book Differential Equations and Linear Algebra written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2015-02-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.

Book Chaos and Nonlinear Dynamics

Download or read book Chaos and Nonlinear Dynamics written by Robert C. Hilborn and published by Oxford University Press, USA. This book was released on 1994 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Miscellaneous.

Book Initial boundary Value Problems and the Navier Stokes Equations

Download or read book Initial boundary Value Problems and the Navier Stokes Equations written by Heinz-Otto Kreiss and published by SIAM. This book was released on 1989-01-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.

Book Engineering Mathematics with Examples and Applications

Download or read book Engineering Mathematics with Examples and Applications written by Xin-She Yang and published by Academic Press. This book was released on 2016-12-29 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications