EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Implementation and Operation of a Variable Response Electronic Throttle Control System for a Tf 104g Aircraft

Download or read book The Implementation and Operation of a Variable Response Electronic Throttle Control System for a Tf 104g Aircraft written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-13 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed. Neal, Bradford and Sengupta, Upal Armstrong Flight Research Center RTOP 307-07-00...

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1990 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aeronautical Engineering

Download or read book Aeronautical Engineering written by and published by . This book was released on 1991 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).

Book Government Reports Announcements   Index

Download or read book Government Reports Announcements Index written by and published by . This book was released on 1990 with total page 1022 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book NASA SP

    Book Details:
  • Author :
  • Publisher :
  • Release : 1990
  • ISBN :
  • Pages : 468 pages

Download or read book NASA SP written by and published by . This book was released on 1990 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1992 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flex Fuel Optimized SI and HCCI Engine

Download or read book Flex Fuel Optimized SI and HCCI Engine written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.

Book Electronic Propulsion Control System Aircraft Interface Control Documents

Download or read book Electronic Propulsion Control System Aircraft Interface Control Documents written by E-36 Electronic Engine Controls Committee and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SAE Aerospace Information Report (AIR) provides guidelines to document the functional and physical interface requirements for the electrical systems (including an Electronic Engine Control System (EECS) and its components) between a given propulsion system and the aircraft on which the system is installed.The Interface Control Document (ICD) is considered to be a subset of the Engine Installation Manual, with interface considerations between the Airframer and Engine manufacturer. Although it can be developed concurrently with the Airframer and Engine manufacturer, its format and content result from an agreement between the Engine and Aircraft Type Certificate Holders, using the Certification Guidelines.Within this document, the following definitions are adapted from the AC33.28-1 and CS-Definitions: "Engine Control System" means any system or device which is part of the Engine Type design, which controls, limits, or monitors Engine operation and is necessary for continued airworthiness of the Engine. "Electronic Engine Control System" (EECS) means an Engine Control System in which the primary functions are provided using electronics. It includes all the components (i.e., electrical, electronic, hydro-mechanical and pneumatic) which are necessary for the control of the Engine and may incorporate other control functions where desired.The term "EEC" is used to refer to the Electronic Engine Control unit. The term "aircraft" is used with the global meaning of aircraft or rotorcraft.The scope includes commercial and general aviation aircraft powered by piston, turbofan, turboprop, and turboshaft engines equipped with electronic engine controls. It can also be applicable to an Auxiliary Power Unit (APU) equipped with an electronic control. AIR6181 is based on the previously issued ARP4874 to inform engine and aircraft manufacturers on the structure and content of an Interface Control Document for an Electronic Engine Control System. This revision reflects the input received as part of the Five-Year Review process.

Book Design and Implementation of a Throttle Control System

Download or read book Design and Implementation of a Throttle Control System written by Jose Carlos Bustamante Guereca and published by . This book was released on 2000 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flight Test System Identification

Download or read book Flight Test System Identification written by Roger Larsson and published by Linköping University Electronic Press. This book was released on 2019-05-15 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.

Book Flying beyond the stall

Download or read book Flying beyond the stall written by Douglas A. Joyce and published by . This book was released on 2014 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The X-31 Enhanced Fighter Maneuverability Demonstrator was unique among experimental aircraft. A joint effort of the United States and Germany, the X-31 was the only X-plane to be designed, manufactured, and flight tested as an international collaboration. It was also the only X-plane to support two separate test programs conducted years apart, one administered largely by NASA and the other by the U.S. Navy, as well as the first X-plane ever to perform at the Paris Air Show. Flying Beyond the Stall begins by describing the government agencies and private-sector industries involved in the X-31 program, the genesis of the supermaneuverability concept and its initial design breakthroughs, design and fabrication of two test airframes, preparation for the X-31's first flight, and the first flights of Ship #1 and Ship #2. Subsequent chapters discuss envelope expansion, handling qualities (especially at high angles of attack), and flight with vectored thrust. The book then turns to the program's move to NASA's Dryden Flight Research Center and actual flight test data. Additional tasking, such as helmet-mounted display evaluations, handling quality studies, aerodynamic parameter estimation, and a "tailless" study are also discussed.The book describes how, in the aftermath of a disastrous accident with Ship #1 in 1995, Ship #2 was prepared for its outstanding participation in the Paris Air Show. The aircraft was then shipped back to Edwards AFB and put into storage until the late 1990s, when it was refurbished for participation in the U. S. Navy's VECTOR program. The book ends with a comprehensive discussion of lessons learned and includes an Appendix containing detailed information.

Book Automatic Control of Atmospheric and Space Flight Vehicles

Download or read book Automatic Control of Atmospheric and Space Flight Vehicles written by Ashish Tewari and published by Springer Science & Business Media. This book was released on 2011-08-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Control of Atmospheric and Space Flight Vehicles is perhaps the first book on the market to present a unified and straightforward study of the design and analysis of automatic control systems for both atmospheric and space flight vehicles. Covering basic control theory and design concepts, it is meant as a textbook for senior undergraduate and graduate students in modern courses on flight control systems. In addition to the basics of flight control, this book covers a number of upper-level topics and will therefore be of interest not only to advanced students, but also to researchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory.

Book In Flight Simulators and Fly by Wire Light Demonstrators

Download or read book In Flight Simulators and Fly by Wire Light Demonstrators written by Peter G. Hamel and published by Springer. This book was released on 2017-03-15 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engi neers, but also other aeronautical scientists, engineers and project managers and historians as well. Students with a general interest in aeronautics as well as researchers in countries with growing aeronautical ambitions will also find the book useful. The omission of mathematical equations and in-depth theoretical discussions in favor of fresh discussions on innovative experiments, together with the inclusion of anecdotes and fascinating photos, make this book not only an enjoyable read, but also an important incentive to future research. The book, translated from the German by Ravindra Jategaonkar, is an extended and revised English edition of the book Fliegende Simulatoren und Technologieträger , edited by Peter Hamel and published by Appelhans in 2014.