Download or read book New Ideas in Tokamak Confinement written by Marshall N. Rosenbluth and published by Springer Science & Business Media. This book was released on 1997-05-08 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market: Scientists and students involved in thermonuclear fusion research. Thermonuclear fusion research using the confinement device tokamak represents one of the most prominent science projects in the second half of the 20th century. International Tokamak Community is now committing significant effort and funds to experiments with burning plasma, hot and dense enough to produce significant nuclear fusion reactions. The methods used to enhance tokamak performance have a profound and immediate effect on machine design. This book provides an up-to-date account of research in tokamak fusion and puts forward innovative ideas in confinement physics.
Download or read book Energetic Particles in Tokamak Plasmas written by Sergei Sharapov and published by CRC Press. This book was released on 2021-04-02 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of energetic particles in magnetic fusion plasmas is key to the development of next-generation "burning" plasma fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Power Station (DEMO). This book provides a comprehensive introduction and analysis of the experimental data on how fast ions behave in fusion-grade plasmas, featuring the latest ground-breaking results from world-leading machines such as the Joint European Torus (JET) and the Mega Ampere Spherical Tokamak (MAST). It also details Alfvenic instabilities, driven by energetic ions, which can cause enhanced transport of energetic ions. MHD spectroscopy of plasma via observed Alfvenic waves called "Alfvén spectroscopy" is introduced and several applications are presented. This book will be of interest to graduate students, researchers, and academics studying fusion plasma physics. Features: Provides a comprehensive overview of the field in one cohesive text, with the main physics phenomena explained qualitatively first. Authored by an authority in the field, who draws on his extensive experience of working with energetic particles in tokamak plasmas. Is suitable for extrapolating energetic particle phenomena in fusion to other plasma types, such as solar and space plasmas.
Download or read book Frontiers in Fusion Research II written by Mitsuru Kikuchi and published by Springer. This book was released on 2015-09-03 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent progress in our understanding of tokamak physics related to steady state operation, and addresses the scientific feasibility of a steady state tokamak fusion power system. It covers the physical principles behind continuous tokamak operation and details the challenges remaining and new lines of research towards the realization of such a system. Following a short introduction to tokamak physics and the fundamentals of steady state operation, later chapters cover parallel and perpendicular transport in tokamaks, MHD instabilities in advanced tokamak regimes, control issues, and SOL and divertor plasmas. A final chapter reviews key enabling technologies for steady state reactors, including negative ion source and NBI systems, Gyrotron and ECRF systems, superconductor and magnet systems, and structural materials for reactors. The tokamak has demonstrated an excellent plasma confinement capability with its symmetry, but has an intrinsic drawback with its pulsed operation with inductive operation. Efforts have been made over the last 20 years to realize steady state operation, most promisingly utilizing bootstrap current. Frontiers in Fusion Research II: Introduction to Modern Tokamak Physics will be of interest to graduate students and researchers involved in all aspects of tokamak science and technology.
Download or read book Self Organization of Hot Plasmas written by Yu.N. Dnestrovskij and published by Springer. This book was released on 2014-07-08 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges. The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization. It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect of self-organization in the mathematical model without having to recur to particular physical mechanisms. The CPTM model contains one dimensional transport equations for ion and electron temperatures, plasma density and toroidal rotation velocity. These equations are well established and in fact are essentially a reformulation the laws of energy, particle and momentum conservation. But the expressions for the energy and particle fluxes, including certain critical gradients, are new. These critical gradients can be determined using the concept of canonical profiles for the first time formulated in great detail in the book. This concept represents a totally new approach to the description of transport in plasmas. Mathematically, the canonical profiles are formulated as a variational problem. To describe the temporal evolution of the plasma profiles, the Euler equation defining the canonical profiles is solved together with the transport equations at each time step. The author shows that in this way it is possible to describe very different operational scenarios in tokamaks (L-Mode, H-Mode, Advanced Modes, Radiating Improved Modes etc...), using one unique principle. The author illustrates the application of this principle to the simulation of plasmas on leading tokamak devices in the world (JET, MAST, T-10, DIII-D, ASDEX-U, JT-60U). In all cases the small differences between the calculated profiles for the ion and electron temperatures and the experimental is rather confirm the validity of the CPTM. In addition, the model also describes the temperature and density pedestals in the H-mode and non steady-state regimes with current and density ramp up. The proposed model therefore provides a very useful mathematical tool for the analysis of experimental results and for the prediction of plasma parameters in future experiments.
Download or read book Safety Factor Profile Control in a Tokamak written by Federico Bribiesca Argomedo and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with. Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR). Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.
Download or read book Theory Of Toroidally Confined Plasmas The Third Edition written by Roscoe B White and published by World Scientific Publishing Company. This book was released on 2013-11-18 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary.This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has been added, with comparisons of the analysis of resonances using guiding center results. A new chapter on the use of lithium lined walls has been added, a promising means of lowering the complexity and cost of full scale fusion reactors. A section on nonlocal transport has been added, including an analysis of Levy flight simulations of ion transport in the reversed field pinch in Padova, RFX.
Download or read book Plasma Transport Heating and MHD Theory written by T. Stringer and published by Elsevier. This book was released on 2013-10-22 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Transport, Heating and MHD Theory provides information pertinent to the theory of plasma transport, heating, and MHD. This book describes the resistive steady states of elliptical cross-section plasmas. Organized into five parts encompassing 28 chapters, this book begins with an overview of the effects due to instabilities excited in the low-density regime of tokamaks by runaway electrons via the cyclotron resonance. This text then examines the formulation of transport theory, which is applied to transport in tokamak due to trapped-particle instabilities in the quasi-linear stage. Other chapters consider the stability of the boundary regions of gas insulated plasmas. This book discusses as well the zero-dimensional or point model of the Elmo Bumpy Torus (EBT) experiment in which spatial dependences are eliminated by replacing all plasma gradients by characteristic scale lengths equal to the plasma minor radius. The final chapter deals with anomalous transport theory. This book is a valuable resource for plasma physicists.
Download or read book Tearing Mode Activity in the Phaedrus T Tokamak written by Binsheng Cui and published by . This book was released on 1993 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Trapped particle Instability in Tokamaks written by Wallace M. Manheimer and published by . This book was released on 1977 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Tokamak Start Up Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor Ettor Majorana International Science Series written by Heinz Knoepfel and published by Springer. This book was released on 2013-12-19 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the papers presented at the Course on "Tokamak Startup - Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor" which was held in Erice, July 14-20, 1985. The fact that the critical startup and transient phases of a tokamak reactor are now the specific subject of a comprehensive international gathering of fusion specialists seems indicative of the substantial pro gress made in recent years towards attaining controlled ignition of a nuclear fusion fuel, i.e. towards demonstrating the scientific feasibili ty of controlled thermonuclear fusion. In fact, the steady-state burning phase has attracted so far most of the attention of fusion physicists and engineers, as it is conceptually more rewarding, and theoretically easier to handle. However, as for many large engineering systems, - nuclear fis- ... ':1' " . 10 ' ... Entrance to San Rocco's lecturing hall v sion power plants, or aerospace crafts, for example - the major issues of design and operation lie often in the startup, shutdown and power tran sieQt phases, rather than at the full load, or at cruising regimes. In ehoosing the contributions to this 7th Course of Prof. B.
Download or read book Heating in Toroidal Plasmas written by T. Consoli and published by Elsevier. This book was released on 2016-06-03 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heating in Toroidal Plasmas, Volume 1 documents the proceedings of the symposium held at the Centre d'Etudes Nucléaires, Grenoble, France, on July 3-7, 1978. This volume compiles 52 articles that are thematically grouped in this publication. The first two sets of papers focus on the general theory and topics on neutral beam injection. The subsequent group of papers studies heating at ion cyclotron- and lower frequencies. A bulk of papers compiled in this volume examines lower hybrid resonance heating. The remaining set of papers is devoted to electron cyclotron heating. This volume will be invaluable to physics students and others interested in studying plasma, specifically the method of heating in toroidal plasmas.
Download or read book Tokamak Reactors for Breakeven written by H. Knoepfel and published by Elsevier. This book was released on 2013-10-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tokamak Reactors for Breakeven: A Critical Study of the Near-Term Fusion Reactor Program presents all possible aspects concerning the Tokamak line of research. This book examines the many significant implications of fusion research programs. Organized into five parts encompassing 29 chapters, this book begins with an overview of the mechanisms of anomalous loss in existing machines. This text then examines the environmental problems related to the use of large quantities of tritium. Other chapters consider the technology of superconducting Tokamak magnets, which provides challenging tasks both for specific developments in laboratories and hardware construction in industry. This book discusses as well the established program goal of the fusion program to develop and demonstrate pure fusion central electric power stations for commercial applications. The final chapter deals with the two types of reactors, namely, the liquid metal fast breeder reactors (LMFBR) and the high temperature reactors (HTR). This book is a valuable resource for scientists, engineers, and technologists.
Download or read book Wave Heating and Current Drive in Plasmas written by Victor L. Granatstein and published by CRC Press. This book was released on 1985 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Radiofrequency Heating of Plasmas written by R. A. Cairns and published by CRC Press. This book was released on 1991 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cross and Manheimer/Lashmore-Davies sell steadily in the export market - potential for Cairns here. This book provides a concise introduction to the basic physics of radiofrequency heating. Most existing literature on the subject is at the research level, aimed at specialists in the field. It provides a survey of theoretical and experimental results with a large number of references to help the reader wishing for more detail. Provides a concise and readable account/ Basic physical principles are emphasised and more complicated mathematical ideas are explained in outline. Radiofrequency current drive is discussed in detail. "One criticsm may be lack of detail. I have deliberatly avoided including a lot of mathematical and experimental detail in order to keep the book short and to concentrate on the essential ideas. Enough references are given to lead anyone wishing more detail to the appropriate literature" - comment from the author? Export Market: Japan, USA, CERN, all important centres for fusion research Tokamaks - supercolliders for particle acceleration - particles are bombarded by extremely powerful lasers the beams of which are split many times through kms of piping - massive structurees largest currently in Japan but also important structure in US.
Download or read book Instabilities in a Confined Plasma written by A.B Mikhailovskii and published by Routledge. This book was released on 2017-10-05 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instabilities in a Confined Plasma is entirely devoted to a theoretical exposition of the subject of plasma instabilities in confined systems. The book is an important contribution to the study of plasma instabilities, not only in fusion devices such as the Tokamak but also in astrophysical phenomena. It covers toroidal confinement systems, internal MHD modes, small-scale MHD instabilities, MHD internal kink modes, MHD modes in collisionless and neoclassical regimes, drift-MHD modes, external kink modes, and Alfven eigenmodes.
Download or read book Energetic Particles in Tokamak Plasmas written by Sergei Sharapov and published by CRC Press. This book was released on 2021-03-18 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of energetic particles in magnetic fusion plasmas is key to the development of the next generation of "burning" plasma fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER) and the Demonstration Power Station (DEMO). This book provides a comprehensive introduction and analysis of the latest experimental data on how fast ions behave in fusion grade plasmas, featuring the latest ground-breaking results from world leading machines such as the Joint European Torus (JET) and the Mega Ampere Spherical Tokamak (MAST). It also details Alfvenic instabilities, driven by energetic ions, which could cause the stochastic transport of energetic ions. MHD spectroscopy of plasma via observed Alfvenic waves and called "Alfvén spectroscopy" is introduced and several applications are presented. This book will be of interest to graduate students, researchers, and academics studying fusion plasma physics. Key Features: Provides a comprehensive overview of the field in one cohesive text, with main physics phenomena explained qualitatively first Authored by an authority in the field, who draws on his extensive experience of working with energetic particles in fusion plasmas Is suitable for extrapolating energetic particle phenomena in fusion to other types of plasmas, such as solar and space plasmas
Download or read book The Theory of Toroidally Confined Plasmas written by R. B. White and published by World Scientific. This book was released on 2001 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book is designed to provide a basic introduction to plasma equilibrium, particle orbits, transport, and those ideal and resistive magnetohydrodynamic instabilities which dominate the behavior of toroidal magnetically confined plasmas, and to develop the mathematical methods necessary for their theoretical analysis. The book deals primarily with the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of fusion oriented discharges.