EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Techno economic Comparison of Hot Water and Dilute Acid Pretreatment for Biochemical Production of Ethanol from Corn Stover and Evaluation of Alternative Scenarios to Purchasing Cellulase Enzymes

Download or read book Techno economic Comparison of Hot Water and Dilute Acid Pretreatment for Biochemical Production of Ethanol from Corn Stover and Evaluation of Alternative Scenarios to Purchasing Cellulase Enzymes written by Joshua A. Fortman and published by . This book was released on 2009 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pretreatment of Biomass

Download or read book Pretreatment of Biomass written by Ashok Pandey and published by Academic Press. This book was released on 2014-09-18 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pretreatment of Biomass provides general information, basic data, and knowledge on one of the most promising renewable energy sources—biomass for their pretreatment—which is one of the most essential and critical aspects of biomass-based processes development. The quest to make the environment greener, less polluted, and less hazardous has led to the concept of biorefineries for developing bio-based processes and products using biomass as a feedstock. Each kind of biomass requires some kind of pretreatment to make it suitable for bioprocess. This book provides state-of-art information on the methods currently available for this. This book provides data-based scientific information on the most advanced and innovative pretreatment of lignocellulosic and algal biomass for further processing. Pretreatment of biomass is considered one of the most expensive steps in the overall processing in a biomass-to-biofuel program. With the strong advancement in developing lignocellulose biomass- and algal biomass-based biorefineries, global focus has been on developing pretreatment methods and technologies that are technically and economically feasible. This book provides a comprehensive overview of the latest developments in methods used for the pretreatment of biomass. An entire section is devoted to the methods and technologies of algal biomass due to the increasing global attention of its use. - Provides information on the most advanced and innovative pretreatament processes and technologies for biomass - Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery - Useful for researchers intending to study scale-up - Provides information on integration of processes and technologies for the pretreatment of biomass

Book Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Download or read book Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol written by and published by . This book was released on 2011 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and "nth-plant" project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007 dollars.

Book Handbook of Biofuels Production

Download or read book Handbook of Biofuels Production written by Rafael Luque and published by Woodhead Publishing. This book was released on 2016-05-19 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Book Techno Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

Download or read book Techno Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol written by and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

Book Fuel Ethanol Production from Sugarcane

Download or read book Fuel Ethanol Production from Sugarcane written by Thalita Peixoto Basso and published by BoD – Books on Demand. This book was released on 2019-01-23 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a broad understanding of bioethanol production from sugarcane, although a few other substrates, except corn, will also be mentioned. The 10 chapters are grouped in five sections. The Fuel Ethanol Production from Sugarcane in Brazil section consists of two chapters dealing with the first-generation ethanol Brazilian industrial process. The Strategies for Sugarcane Bagasse Pretreatment section deals with emerging physicochemical methods for biomass pretreatment, and the non-conventional biomass source for lignocellulosic ethanol production addresses the potential of weed biomass as alternative feedstock. In the Recent Approaches for Increasing Fermentation Efficiency of Lignocellulosic Ethanol section, potential and research progress using thermophile bacteria and yeasts is presented, taking advantage of microorganisms involved in consolidating or simultaneous hydrolysis and fermentation processes. Finally, the Recent Advances in Ethanol Fermentation section presents the use of cold plasma and hydrostatic pressure to increase ethanol production efficiency. Also in this section the use of metabolic-engineered autotrophic cyanobacteria to produce ethanol from carbon dioxide is mentioned.

Book Biochemical Conversion of Lignocellulosic Biomass to Ethanol

Download or read book Biochemical Conversion of Lignocellulosic Biomass to Ethanol written by Deepak Kumar and published by . This book was released on 2014 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ethanol production from lignocellulosic feedstock has been under intense scrutiny as a transportation fuel due to its potential to address concerns of increasing energy consumption, limited fossil energy resources, climate changes due to greenhouse gas emissions from fossil fuels, and especially use of non-food biomaterials, which address the biggest limitation of first generation bioethanol. Despite these advantages, the lignocellulosic ethanol production on commercial scale is still on verge because of high processing costs of ethanol production. In the biochemical conversion process, biomass is converted to ethanol by sequential steps of pretreatment (to reduce the recalcitrance of biomass), hydrolysis (conversion of sugar polymers to monomers) and fermentation (sugars to ethanol). Every year, about a million ton of grass straw is available as agricultural residue in Pacific Northwest. There were no previous comprehensive studies to evaluate the technical feasibility, economic viability and environmental sustainability of the bioethanol produced using grass straw in Willamette valley. The focus of this dissertation was to investigate the potential of cellulosic ethanol production from grass straw, assess the techno-economic viability and environmental impacts of the bioethanol production and development of a stochastic molecular model for modeling cellulose hydrolysis. This dissertation was divided into four studies focused on individual aspects of the overall objective. The first study evaluated the ethanol production potential from straws produced from three major grass seed varieties (perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea Schreb) and bentgrass (Agrostis sp.)) in Pacific Northwest. Feedstocks were pretreated using three chemical pretreatments (dilute acid, dilute alkali, and hot water) and subsequently hydrolyzed enzymatically to investigate the effect of pretreatment and estimate the potential ethanol yields. Carbohydrate content in biomass varied from 40.6 to 52.9%, with tall fescue having the maximum cellulose content of 32.4%. All pretreatment were effective in increasing the hydrolysis yields, and theoretical maximum ethanol yields were in the range of 276 to 360 L per ton of biomass. The second study performed the comprehensive techno-economic analysis of ethanol production from tall fescue using dilute acid, dilute alkali, hot water, and steam explosion pretreatment technologies. Detailed process models incorporating all unit operations in lignocellulosic ethanol plant with 250,000 metric ton biomass/ year processing capacity were developed in SuperPro Designer. The ethanol production cost were estimated from $0.81 to $0.88/ L of ethanol, and were found highly sensitive to biomass price, enzyme cost, and pentose sugar fermentation efficiency. Energy from lignin residue burning was found sufficient to meet the steam requirement in the production process. Third study performed the life cycle assessment for bioethanol production from grass straw considering various pretreatment technology options. The study revealed that ethanol production from grass straw provide environmental benefits compared to use of gasoline, with 57.43-112.67% reduction in fossil energy use to produce 10,000 MJ of fuel. The GHG emissions during life cycle of ethanol production were estimated in the range of -131 to -555.4 kg CO2 eq. per 10,000 MJ of fuel. It was observed that assumptions and allocation procedure used during the analysis had a significant effect on the LCA results. During the techno-economic assessment of bioethanol process, it was found that cost of cellulose enzymes was significant fraction of the total ethanol production cost. A comprehensive enzymatic hydrolysis model can play critical role in optimizing the enzyme composition and dosage, improving understanding of the process mechanism and reducing the cost of enzymes, a major bottleneck in the ethanol production process. A novel approach of stochastic molecular modeling, in which each hydrolysis event is translated into a discrete event, was used to develop a mechanistic model for cellulose hydrolysis in the fourth study. Cellulose structure was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Major structural properties: crystallinity, degree of polymerization, surface accessibility, and enzyme characteristics: mode of action, binding and surface blockage, inhibition, along with the dynamic morphological changes in structure of cellulose were incorporated in the model. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Hydrolysis results predicted by model simulations had shown a good fit with the experimental data from hydrolysis of pure cellulose using purified enzymes for various hydrolysis conditions. The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Model was able to simulate and validate all the important expected experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism on different substrates. The work from this dissertation proved the significance of choosing technology options, drew a comparison among different pretreatment technologies, identified the critical processes and inputs that have significant effect on the ethanol production cost, net energy, and GHG emissions. Results from the last study confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis, which has wide potential application in bioethanol production research to reduce the enzyme cost.

Book Sustainable Degradation of Lignocellulosic Biomass

Download or read book Sustainable Degradation of Lignocellulosic Biomass written by Anuj Chandel and published by BoD – Books on Demand. This book was released on 2013-05-15 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides important aspects of sustainable degradation of lignocellulosic biomass which has a pivotal role for the economic production of several value-added products and biofuels with safe environment. Different pretreatment techniques and enzymatic hydrolysis process along with the characterization of cell wall components have been discussed broadly. The following features of this book attribute its distinctiveness: This book comprehensively covers the improvement in methodologies for the biomass pretreatment, hemicellulose and cellulose breakdown into fermentable sugars, the analytical methods for biomass characterization, and bioconversion of cellulosics into biofuels. In addition, mechanistic analysis of biomass pretreatment and enzymatic hydrolysis have been discussed in details, highlighting key factors influencing these processes at industrial scale.

Book NREL 2012 Achievement of Ethanol Cost Targets

Download or read book NREL 2012 Achievement of Ethanol Cost Targets written by Ling Tao and published by . This book was released on 2014 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

Book Techno economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

Download or read book Techno economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol written by and published by . This book was released on 2010 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

Book Lignocellulosic Biomass to Value Added Products

Download or read book Lignocellulosic Biomass to Value Added Products written by Mihir Kumar Purkait and published by Elsevier. This book was released on 2021-06-17 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignocellulosic Biomass to Value-Added Products: Fundamental Strategies and Technological Advancements focuses on fundamental and advanced topics surrounding technologies for the conversion process of lignocellulosic biomass. Each and every concept related to the utilization of biomass in the process of conversion is elaborately explained, with importance given to minute details. Advanced level technologies involved in the conversion of biomass into biofuels, like bioethanol and biobutanol, are addressed, along with the process of pyrolysis. Readers of this book will become fully acquainted with the field of lignocellulosic conversion, from its basics to current research accomplishments. The uniqueness of the book lies in the fact that it covers each and every topic related to biomass and its conversion into value-added products. Technologies involved in the major areas of pretreatment, hydrolysis and fermentation are explained precisely. Additional emphasis is given to the analytical part, especially the established protocols for rapid and accurate quantification of total sugars obtained from lignocellulosic biomass. - Includes chapters arranged in a flow-through manner - Discusses mechanistic insights in different phenomena using colorful figures for quick understanding - Provides the most up-to-date information on all aspects of the conversion of individual components of lignocellulosic biomass

Book Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

Download or read book Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover written by and published by . This book was released on 2002 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.

Book Integrated Biorefineries

Download or read book Integrated Biorefineries written by Paul R. Stuart and published by CRC Press. This book was released on 2012-12-10 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex

Book Comparison of Kinetics of Xylose and Lignin Removal During Hot Water and Dilute Acid Pretreatment of Corn Stover using a Continuous Flow Through Reactor  Poster

Download or read book Comparison of Kinetics of Xylose and Lignin Removal During Hot Water and Dilute Acid Pretreatment of Corn Stover using a Continuous Flow Through Reactor Poster written by and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wood Chemistry

Download or read book Wood Chemistry written by Eero Sjostrom and published by Elsevier. This book was released on 2013-10-22 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wood Chemistry, Fundamentals and Applications, Second Edition, examines the basic principles of wood chemistry and its potential applications to pulping and papermaking, wood and wood waste utilization, pulping by-products for production of chemicals and energy, and biomass conversion.

Book Sugarcane Bioethanol

Download or read book Sugarcane Bioethanol written by Luís Augusto Barbosa Cortez and published by . This book was released on 2010 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Brazil, sugarcane ethanol supplied, in 2009, 17.6 % of the energy for land transportation (excluding railroads)and about 55% of the total energy supplied by liquid fuel for Otto cycle engines. Besides the lower production costs ethanol produced from sugarcane in Brazil has another important advantage: in Central-South Brazil only 1 unit of fossil energy is used for each 8-9 units of energy produced by ethanol from sugarcane. Carbon emissions reduction also benefits from sugarcane ethanol: for each cubic meter of ethanol used as fuel, there is net saving of around 2 t CO2 not emitted to the atmosphere while, at the same time, no SO2 is emitted. Sugarcane was introduced in Brazil in 1532. The "Brazilian model" of producing concomitantly sugar and ethanol, brought important technical benefits and made possible an outstanding increase in the competitiveness in the international market for sugar and ethanol. Today about 50% of the sucrose of sugarcane produced in the country is directed to the production of sugar while another half is used to produce Ethanol. Industrial and academic R&D has helped to increase the productivity of ethanol steadily over the past 35 years, at a rate of 3.2% per year. Productivity gains implied savings of planted area by a factor of 2.6. In 2009/2010 the area planted with sugarcane for Ethanol production was 4.2 Mha, amounting to 1% of the total arable land available in Brazil. About 60% of the Ethanol produced in Brazil comes from the State of Sao Paulo, where the productivity is the highest (around 86 t/ha.year). Most of the recent expansion is happening in the center-west region of the country, in degraded pasture lands. The FAPESP Program for Research on Bioenergy, BIOEN, aims at articulating public and private R&D, using academic and industrial laboratories to advance and apply knowledge in fields related to ethanol production in Brazil. The BIOEN Program has a solid core for supporting academic exploratory research activities that will generate new knowledge and form scientists and professionals essential for advancing industry capacity in ethanol related technologies. On top of this, BIOEN includes partnerships with industry for cooperative R&D activities between industrial and academic laboratories, which are to be co-funded by FAPESP and industry.Federal agencies, such as CNPq, will also co-fund the research.

Book Waste Valorisation

    Book Details:
  • Author : Carol Sze Ki Lin
  • Publisher : John Wiley & Sons
  • Release : 2020-12-14
  • ISBN : 1119502705
  • Pages : 282 pages

Download or read book Waste Valorisation written by Carol Sze Ki Lin and published by John Wiley & Sons. This book was released on 2020-12-14 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the wide-variety of waste valorisation techniques related to various biomass, waste materials and by products Waste Valorisation provides a comprehensive review of waste chemistry and its application to the generation of value-added products. The authors – noted experts on the topic – offer a clear understanding of waste diversity, drivers and policies governing its valorisation based on the location. The book provides information on the principles behind various valorisation schemes and offers a description of general treatment options with their evaluation guidelines in terms of cost, energy consumption and waste generation. Each of the book's chapters contain an introduction which summarises the current production and processing methods, yields, energy sources and other pertinent information for each specific type of waste. The authors focus on the most relevant novel technologies for value-added processing of waste streams or industrial by-products which can readily be integrated into current waste management systems. They also provide the pertinent technical, economic, social and environmental evaluations of bioconversions as future sustainable technologies in a biorefinery. This important book: Presents the most current technologies which integrate waste and/or by-product valorisation Includes discussions on end-product purity and life-cycle assessment challenges Explores relevant novel technologies for value-added processing of waste streams or industrial by-products which can be integrated into current waste management systems Offers a guide to waste reuse, a key sustainability goal for existing biorefineries wishing to reduce material and environmental costs Written for academic researchers and industrial scientists working in agricultural and food production, bioconversions and waste management professionals, Waste Valorisation is an authoritative guide to the chemistry and applications of waste materials and provides an overview of the most recent developments in the field.