Download or read book Tailored Polymers and Applications written by Yagci and published by CRC Press. This book was released on 2020-04-28 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of papers presented at APME '99 ( Third International Symposium on Advanced Polymers via Macromolecular Engineering --- Colonial Williamsburg, VA, USA, July/August 1999). The book focuses on the synthesis of targeted polymers with specific properties using macromolecular architecture. Various controlled polymerization
Download or read book Tailor Made Polysaccharides in Biomedical Applications written by Amit Kumar Nayak and published by Academic Press. This book was released on 2021-02-15 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tailor-Made Polysaccharides in Biomedical Applications provides extensive details on all the vital precepts, basics, and fundamental aspects of tailored polysaccharides in the pharmaceutical and biotechnological industries. This information provides readers with the foundation for understanding and developing high-quality products. The utilization of natural polymeric excipients in numerous healthcare applications demands the replacement of the synthetic polymers with natural polymers. Natural polymers are superior in terms of biocompatibility, biodegradability, economic extraction, and ready availability. Natural polymers are especially useful in that they are a renewable source of raw materials, as long as they are grown sustainably. Among these natural polymers, polysaccharides are considered as excellent excipients because they are nontoxic, stable, and biodegradable. Several research innovations have been carried out using polysaccharides in drug delivery applications. This book offers a comprehensive resource to understand the potential of these materials in forming new drug delivery methods. It will be useful to biomedical researchers, chemical engineers, regulatory scientists, and students who are actively involved in developing pharmaceutical products for biomedical applications by using tailor-made polysaccharides. - Provides methodology for the design, development, and selection of tailor-made polysaccharides in biomedical applications, including for particular therapeutic applications - Includes illustrations demonstrating the mechanism of biological interaction of tailor-made polysaccharides - Discusses the regulatory aspects and demonstrates the clinical efficacy of tailor-made polysaccharides
Download or read book Polymer Science and Engineering written by National Research Council and published by National Academies Press. This book was released on 1994-01-01 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.
Download or read book Modification of Polymer Properties written by Carlos Federico Jasso-Gastinel and published by William Andrew. This book was released on 2016-09-14 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties. - Provides an integrated view on how to modify polymer properties - Presents the entire panorama of polymer properties modification in one reference, covering the essential information in each topic - Includes the optimization of properties using gradients in polymers composition or structure
Download or read book Miktoarm Star Polymers written by Ashok Kakkar and published by Royal Society of Chemistry. This book was released on 2017-04-13 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term ‘miktoarm polymers’ refers to asymmetric branched macromolecules, a relatively new entry to the macromolecular field. Recent advances in their synthesis and intriguing supramolecular chemistry in a desired medium has seen a fast expansion of their applications. The composition of miktoarm polymers can be tailored and even pre-defined to allow a desired combination of functions, meaning polymer chemists can have complete control of the overall architecture of these macromolecules. By carefully selecting the composition, they can create supramolecular structures with intriguing properties, particularly for applications in biology. Miktoarm Star Polymers features chapters from experts actively working in this field, and provides the reader with a unique introduction to the fundamental principles of this exciting macromolecular system. Topics covered include the design, synthesis, characterization, self-assembly and applications of miktoarm polymers. The book is an excellent overview and up to date guide to those working in research in polymer chemistry, materials science, and polymers for medical applications.
Download or read book Tailor Made Polymers written by John R. Severn and published by John Wiley & Sons. This book was released on 2008-06-25 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first comprehensive handbook on this exciting field provides readers with a clear understanding of the current state of the art, ingenious solutions and opportunities. Researchers from academia and industry present such emerging topics as multi-component systems and computational chemistry, as well as the latest developments in competing and complementary technologies. The result is a well-balanced and up-to-date overview.
Download or read book Tailoring Surfaces Modifying Surface Composition And Structure For Applications In Tribology Biology And Catalysis written by Nicholas D Spencer and published by World Scientific. This book was released on 2011-03-08 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is surface modification, with the goal of tailoring materials for a specific application. By means of this approach, ideal bulk properties of a material, such as its tensile strength (temperature stability, density, or even cost) can be combined with optimized surface properties, such as hardness, biocompatibility, low or high friction or adhesion, water repellency or wettability, or catalytic activity.The works of the author — many of his crucial papers are included — deal with the understanding and modification of surfaces and span fields including catalysis, analytical surface science, self-assembled monolayers, tribology, biomaterials, superhydrophobicity and polymer coatings.
Download or read book Polymeric Nanosystems written by Md Saquib Hasnain and published by Academic Press. This book was released on 2023-03-23 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymeric Nanosystems: Theranostic Nanosystems, Volume One examines the applications of nanotherapeutic systems and nanodiagnostics in relation to polymeric nanosystems. In the last decade, numerous biopolymers have been utilized to prepare polymeric nanosystems for therapeutic applications. These biopolymers include polylactic acid, polylactide-co-glycolide, polycaprolactone, acrylic polymers, cellulose and cellulose derivatives, alginates, chitosan, gellan gum, gelatin, albumin, chontroitin sulfate, hyaluronic acid, guar gum, gum Arabic, gum tragacanth, xanthan gum, and starches. Besides these biopolymers, grafted polymers are also being used as advanced polymeric materials to prepare many theranostic nanocarriers and nanoformulations. This book explores the array of polymeric nanosystems to understand therapeutic potentials. It will be useful to pharmaceutical scientists, including industrial pharmacists and analytical scientists, health care professionals, and regulatory scientists actively involved in the pharmaceutical product and process development of tailor-made polysaccharides in drug delivery applications. - Contains in-depth discussions of the polymeric nanosystems including high-quality graphics, flowcharts, and graphs for enhanced understanding - Reviews the literature on polymeric nanosystems while also suggesting new avenues - Includes contributions in all areas of polymeric nanosystems, providing a thorough and interdisciplinary work
Download or read book Tailoring Conducting Polymer Interface for Sensing and Biosensing written by Lingyin Meng and published by Linköping University Electronic Press. This book was released on 2020-09-17 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: The routine measurement of significant physiological and biochemical parameters has become increasingly important for health monitoring especially in the cases of elderly people, infants, patients with chronic diseases, athletes and soldiers etc. Monitoring is used to assess both physical fitness level and for disease diagnosis and treatment. Considerable attention has been paid to electrochemical sensors and biosensors as point-of-care diagnostic devices for healthcare management because of their fast response, low-cost, high specificity and ease of operation. The analytical performance of such devices is significantly driven by the high-quality sensing interface, involving signal transduction at the transducer interface and efficient coupling of biomolecules at the transducer bio-interface for specific analyte recognition. The discovery of functional and structured materials, such as metallic and carbon nanomaterials (e.g. gold and graphene), has facilitated the construction of high-performance transducer interfaces which benefit from their unique physicochemical properties. Further exploration of advanced materials remains highly attractive to achieve well-designed and tailored interfaces for electrochemical sensing and biosensing driven by the emerging needs and demands of the “Internet of Things” and wearable sensors. Conducting polymers (CPs) are emerging functional polymers with extraordinary redox reversibility, electronic/ionic conductivity and mechanical properties, and show considerable potential as a transducer material in sensing and biosensing. While the intrinsic electrocatalytic property of the CPs is limited, especially for the bulk polymer, tailoring of CPs with controlled structure and efficient dopants could improve the electrochemical performance of a transducer interface by delivering a larger surface area and enhanced electrocatalytic property. In addition, the rich synthetic chemistry of CPs endows them with versatile functional groups to modulate the interfacial properties of the polymer for effective biomolecule coupling, thus bridging organic electronics and bioelectrochemistry. Moreover, the soft-material characteristics of CPs enable their use for the development of flexible and wearable sensing platforms which are inexpensive and light-weight, compared to conventional rigid materials, such as carbons, metals and semiconductors. This thesis focuses on the exploration of CPs for electrochemical sensing and biosensing with improved sensitivity, selectivity and stability by tailoring CP interfaces at different levels, including the CP-based transduction interface, CP-based bio-interface and CP-based device interface. First, we demonstrate different strategies for tailoring the physicochemical properties of poly (3,4-ethylenedioxythiophene) (PEDOT) beyond its intrinsic properties, via charge effects, structural effects and by the use of hybrid materials, as a CP-based transduction interface to improve sensing performance of various analytes. 1) A positively-charged PEDOT interface, and a negatively-charged carboxylic-acid-functionalised PEDOT (PEDOT:COOH) interface were developed to modulate the electrode kinetics for oppositely-charged analytes, e.g. negatively-charged nicotinamide adenine dinucleotide (NADH) and positively-charged dopamine (DA), respectively. These interfaces displayed high sensitivity and wide linear range towards the analytes due to the electrostatic attraction effect. 2) Various structured PEDOT including porous microspheres and nanofibres were synthesised via hard-template and soft-template methods, respectively, and were employed as building blocks for a hierarchical PEDOT and 3D nanofibrous PEDOT transduction interface, that facilitated signal transduction for NADH. 3) A PEDOT hybrid material interface was developed via using a novel bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate terminal functionality (S-RGO) as dopant to create PEDOT:S-RGO which delivered an enhanced electrochemical performance for various analytes. Based on the established CP-based transduction interface, biomolecules (e.g. enzymes) could be coupled to the CP surface to create CP-based bio-interfaces for biosensing. The immobilisation of enzyme was realised via either covalent bonding to a PEDOT derivative bearing a -COOH group (PEDOT-COOH) through EDC/NHS chemistry, or by physical absorption into the 3D porous PEDOT structure. The CP-based bio-interfaces were used to demonstrate the stable immobilisation of two different types of enzymes, i.e. lactate dehydrogenase and lactate oxidase, achieving the biosensing of analytes by relay bioelectrochemical signal transduction. Together, CP was employed as the CP-based device interface for the fabrication of a flexible and wearable biosensing device. A 3D honeycomb-structured graphene network was generated in-situ on a flexible polyimide surface by mask-free patterning using laser irradiation. The substrate was then reinforced with PEDOT as a polymeric binder to stabilise the 3D porous network by adhesion and binding, thus minimising the delamination of the biosensing interface under deformation and enhancing the mechanical behaviours for use in flexible and wearable devices. The subsequent nanoscale-coating of Prussian blue and immobilisation of enzyme into the 3D porous network provided a flexible platform for wearable electrochemical biosensors to detect lactate in sweat. Rutinmässig övervakning av hälsorelaterade fysiologiska och biokemiska parametrar har blivit allt viktigare för ett stort antal människor bland annat seniorer, spädbarn, patienter med kroniska sjukdomar, idrottare, soldater och med flera, på både en fysisk nivå för förebyggande av sjukdomar samt på en medicinsk nivå för diagnos och behandling av sjukdomar. Stor uppmärksamhet har lagts på utveckling av elektrokemiska sensorer och biosensorer som point-of-care (PoC) diagnostiska enheter for rutinmässig sjukvårdsledning genom deras snabba svar, låga kostnad, höga specificitet och enkla drift. Deras analytiska funktioner drivs av avkänningsgranssnittet vilket involverar signaltransduktion vid transducer-gränssnittet och effektiv koppling av biomolekyler till transducer-biogränssnittet för specifik analytigenkänning. Upptäckten av konventionella funktionella och strukturerade material, t.ex. metalliska nanopartiklar, kolnanorör och grafen, har underlättat konstruktionen av transducergränssnitt med hög prestanda på grund av deras unika fysiokemiska egenskaper. Ytterligare forskning av avancerade material ar önskvärt for att uppnå ett väldesignat och skräddarsytt gränsnitt for elektrokemisk avkänning och biosensering for Internet of Things och klädd sensorer. Ledande polymerer (LP) ar en typ av nya funktionella polymerer med extraordinär redoxomvändbarhet, elektronisk/jonisk ledningsförmåga och mekaniska egenskaper, som uppvisar betydande potential som ett givarmaterial vid avkänning och biosensering. Medan de inneboende elektrokatalytiska egenskaperna i LP:er är begränsade, speciellt for den skrymmande polymeren, kan skräddarsydda LP:er med kontrollerad struktur och effektiva dopmedel förbättra den elektrokemiska prestandan hos ett givargränssnitt med större ytarea och förbättrade elektrokatalytiska egenskaper. Dessutom ger den syntetiska kemin LP:er mångsidiga funktionella grupper för att modulera gränssnittsegenskaperna för LP:er för att förbättra selektivitet for analytdetektering, såväl som för effektiv biomolekylkoppling som ett biogränssnitt som överbryggar den organiska elektroniken och det biologiska system som stöds av de LP:s organkemiska natur. Dessutom möjliggör de mjuka materialegenskaperna för LP:er för användning i utveckling av en flexibla och bärbara avkänningsplattformar med låg kostnad och lätt vikt, jämfört med konventionella styva material, såsom metaller och halvledare. Denna avhandling fokuserar på utforskning av LP:er för elektrokemisk avkänning och biosensering med förbättrad känslighet, selektivitet och stabilitet genom att skräddarsy LP:s gränssnitt i olika nivåer, inklusive LP-baserat transduktionsgränssnitt, LP-baserat bio-gränssnitt och LP-baserat enhetsgränssnitt. Först demonstrerar vi olika strategier for att skräddarsy fysikalisk-kemiska egenskaper hos poly (3,4-etylendioxytiofen) (PEDOT) som ett LP-baserat transduktionsgränssnitt för avkänning via laddningseffekter, struktureffekter och hybridmaterialeffekter för förbättrad prestanda för olika analyser utöver dess inre egenskaper. 1) Ett positivt laddat hierarkiskt PEDOT-gränssnitt och ett negativt laddat karboxylsyra-funktionaliserad PEDOT (PEDOT: COOH) gränssnitt utvecklades for att modulera gränssnittets kinetik for de motsatt laddade analyterna, t.ex. negativt laddad s-Nicotinamidadeninudukleotid (NADH) respektive positivt laddat dopamin (DA). Den elektrokemiska avkänningsprestandan hos dessa analyser förbättrades baserat på laddningseffekten med högre känslighet och ett bredare linjärt intervall. 2) Med tanke på den väl skrymmande filmbildande egenskapen och den resulterande låga tillgängliga aktiva ytan för PEDOT, syntetiserades olika strukturerade PEDOT inklusive porösa mikrosfärer och nanofibrer via en hård mall respektive en mjuk mall och användes sedan som byggstenar för hierarkiska PEDOT och 3D nanofibrosa PEDOT-transduktionsgränssnitt, vilket underlättar signaltransduktion for NADH. 3) Ett LP-hybridmaterialgränssnitt utvecklades med användning av ett nytt bi-funktionellt grafenoxidderivat med hög reduktionsgrad och negativt laddad sulfonatterminal funktionalitet (S-RGO) med förbättrad elektrokemisk prestanda fär olika analyser. Baserat på det etablerade LP-baserade transduktionsgränssnittet utvecklades sedan de LP-baserade bio-gränssnitten med immobilisering av biomolekyler (t.ex. enzym) för biosensering. Immobiliseringen av enzym på LP-gränssnittet realiserades via antingen kovalent bindning till PEDOT-derivatbärande -COOH-grupper (PEDOT-COOH) genom EDC/NHS-kemi eller fysisk absorption i porösa 3D-PEDOT-strukturer. De LP-biobaserade gränssnitten visar stabil immobilisering av två olika typer av enzymer, d.v.s. laktatdehydrogenas och laktatoxidas, vilket uppnår biosensering av analyter genom en successiv bioelektrokemisk signaltransduktion. Tillsammans användes LP:er som det LP-baserade enhetsgränssnittet för tillverkning av en flexibel och bärbar biosenseringsanordning. Ett tredimensionellt bikakestrukturerat grafennatverk genererades in-situ på den flexibla polyimidytan genom maskfri mönstring med laserbestrålningsteknik. Substratet förstärktes sedan med nanodeponerat PEDOT som ett polymert bindemedel for att stabilisera det porösa 3D-nätverket genom vidhäftning och bindning, vilket sålunda förbättrade det mekaniska beteendet för flexibla och bärbara anordningar. Den sekventiella beläggningen på nanoskala av Preussiskt blått (PB) och immobiliseringen av enzym i det porösa 3Dnatverket minimerade delaminering av biosenseringsgränssnittet vid deformation, vilket försedde en flexibel plattform för en bärbar elektrokemisk biosensor för detektering av laktat i svett med det monterade treelektrodsystemet.
Download or read book Polymer Chemistry written by Sebastian Koltzenburg and published by Springer. This book was released on 2017-12-11 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook describes the synthesis, characterization and technical and engineering applications of polymers. Offering a broad and balanced introduction to the basic concepts of macromolecular chemistry and to the synthesis and physical chemistry of polymers, it is the ideal text for graduate students and advanced Masters students starting out in polymer science. Building on the basic principles of organic chemistry and thermodynamics, it provides an easily understandable and highly accessible introduction to the topic. Step by step, readers will obtain a detailed and well-founded understanding of this vibrant and increasingly important subject area at the intersection between chemistry, physics, engineering and the life sciences.Following an approach different from many other textbooks in the field, the authors, with their varying backgrounds (both from academia and industry), offer a new perspective. Starting with a clear and didactic introduction, the book discusses basic terms and sizes and shapes of polymers and macromolecules. There then follow chapters dedicated to polymers in solutions, molar mass determination, and polymers in the solid state, incl. (partially) crystalline or amorphous polymers as well as their application as engineering materials. Based on this information, the authors explain the most important polymerization methods and techniques. Often neglected in other textbooks, there are chapters on technical polymers, functional polymers, elastomers and liquid crystalline polymers, as well as polymers and the environment. An overview of current trends serves to generate further interest in present and future developments in the field.This book is the English translation of the successful German textbook "Polymere", which was awarded the Chemical Industry in Germany’s 2015 literature Prize (“Literaturpreis des Fonds der Chemischen Industrie”) for its innovative, novel approach, and its good accessibility and readability, while at the same time providing comprehensive coverage of the field of polymer science.
Download or read book Self Healing Polymers written by Wolfgang H. Binder and published by John Wiley & Sons. This book was released on 2013-03-29 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-healing is a well-known phenomenon in nature: a broken bone merges after some time and if skin is damaged, the wound will stop bleeding and heals again. This concept can be mimicked in order to create polymeric materials with the ability to regenerate after they have suffered degradation or wear. Already realized applications are used in aerospace engineering, and current research in this fascinating field shows how different self-healing mechanisms proven successful by nature can be adapted to produce even more versatile materials. The book combines the knowledge of an international panel of experts in the field and provides the reader with chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature. It shows how to design self-healing polymers and explains the dynamics in these systems. Different self-healing concepts such as encapsulated systems and supramolecular systems are detailed. Chapters on analysis and friction detection in self-healing polymers and on applications round off the book.
Download or read book Handbook of Biomaterials for Medical Applications Volume 1 written by Deepa Suhag and published by Springer Nature. This book was released on with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Industrial Applications for Intelligent Polymers and Coatings written by Majid Hosseini and published by Springer. This book was released on 2016-05-14 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive collaboration on intelligent polymers and coatings for industrial applications by worldwide researchers and specialists. The authors cover the basis and fundamental aspects of intelligent polymers and coatings, challenges, and potential mechanisms and properties. They include recent and emerging industrial applications in medical, smart textile design, oil and gas, electronic, aerospace, and automobile industries as well as other applications including microsystems, sensors, and actuators, among others. The authors discuss the potential for future research in these areas for improvement and growth of marketable applications of intelligent polymers and coatings.
Download or read book Fluorinated Polymers Applications written by Bruno Ameduri and published by Royal Society of Chemistry. This book was released on 2016-11-08 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial Aspects of Fluorinated Oligomers and Polymers; Fluoroalkyl Acrylate Polymers and Their Applications; Structural Diversity in Fluorinated Polyphosphazenes: Exploring the Change from Crystalline Thermoplastics to High-Performance Elastomers and Other New Materials; Fluoroplastics and Fluoroelastomers - Basic Chemistry and High-performance Applications; Fluorinated Specialty Chemicals - Fluorinated Copolymers for Paints and Perfluoropolyethers for Coatings; Commercial Synthesis and Applications of Poly(Vinylidene Fluoride); The Role Perfluoropolyethers in the Development of Polymeric Proton Exchange Membrane Fuel Cells; Fluorinated Ionomers and Ionomer Membranes: Monomer and Polymer Synthesis and Applications; Research and Non-major Commercial Co- and Terpolymers of Tetrafluoroethylene; Chlorotrifluoroethylene Copolymers for Energy-applied Materials; Fabrication of Flexible Transparent Nanohybrids with Heat-resistance Properties Using a Fluorinated Crystalline Polymer; Creation of Superamphiphobic, Superhydrophobic/Superoleophilic and Superhydrophilic/Superoleophobic Surfaces by Using Fluoroalkyl-endcapped Vinyltrimethoxysilane Oligomer as a Key Intermediate
Download or read book Applications of Biodegradable and Bio Based Polymers for Human Health and a Cleaner Environment written by Iuliana Stoica and published by CRC Press. This book was released on 2021-12-22 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world faces significant challenges as the population and consumption continue to grow while nonrenewable fossil fuels and other raw materials are depleted at ever-increasing rates. This informative volume provides a technical approach to address these issues using green design and analysis. It takes an interdisciplinary look at concepts that can be applied across engineering disciplines in the development of products, processes, and systems to minimize environmental impacts across all life cycle phases. Topics include polymers for pollutant removal, wood-based biopolymers, bio-based polymers for drug formulations, biomaterial-based medical implants, biodegradabilty of biopolymer materials, bio-based polymers for food packaging applications, biodegradable polymers for tissue engineering applications, and more.
Download or read book Encyclopedia of Polymer Applications 3 Volume Set written by Munmaya Mishra and published by CRC Press. This book was released on 2018-12-17 with total page 2954 pages. Available in PDF, EPUB and Kindle. Book excerpt: Undoubtedly the applications of polymers are rapidly evolving. Technology is continually changing and quickly advancing as polymers are needed to solve a variety of day-to-day challenges leading to improvements in quality of life. The Encyclopedia of Polymer Applications presents state-of-the-art research and development on the applications of polymers. This groundbreaking work provides important overviews to help stimulate further advancements in all areas of polymers. This comprehensive multi-volume reference includes articles contributed from a diverse and global team of renowned researchers. It offers a broad-based perspective on a multitude of topics in a variety of applications, as well as detailed research information, figures, tables, illustrations, and references. The encyclopedia provides introductions, classifications, properties, selection, types, technologies, shelf-life, recycling, testing and applications for each of the entries where applicable. It features critical content for both novices and experts including, engineers, scientists (polymer scientists, materials scientists, biomedical engineers, macromolecular chemists), researchers, and students, as well as interested readers in academia, industry, and research institutions.
Download or read book Polymers for Food Applications written by Tomy J. Gutiérrez and published by Springer. This book was released on 2018-08-09 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exhaustive review on the use of polymers for food applications. Polymer-based systems for food applications such as: films, foams, nano- and micro-encapsulated, emulsions, hydrogels, prebiotics, 3D food printing, edible polymers for the development of foods for people with special feeding regimes, sensors, among others, have been analyzed in this work.