Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Download or read book System Identification with MATLAB Non Linear Models Odes and Time Series written by Marvin L. and published by Createspace Independent Publishing Platform. This book was released on 2016-10-23 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In System Identification Toolbox software, MATLAB represents linear systems as model objects. Model objects are specialized data containers that encapsulate model data and other attributes in a structured way. Model objects allow you to manipulate linear systems as single entities rather than keeping track of multiple data vectors, matrices, or cell arrays. Model objects can represent single-input, single-output (SISO) systems or multiple-input, multiple-output (MIMO) systems. You can represent both continuous- and discrete-time linear systems. Thisb book develops de next task with models: Nonlinear Black-Box Model Identification Nonlinear Model Identification Fit Nonlinear Models Identifying Nonlinear ARX Models Nonlinearity Estimators for Nonlinear ARX Models Estimate Nonlinear ARX Models in the GUI Estimate Nonlinear ARX Models at the Command Line Validating Nonlinear ARX Models Identifying Hammerstein-Wiener Models Nonlinearity Estimators for Hammerstein-Wiener Models Estimation Algorithm for Hammerstein-Wiener Models Validating Hammerstein-Wiener Models Linear Approximation of Nonlinear Black-Box Models ODE Parameter Estimation (Grey-Box Modeling) Estimating Linear Grey-Box Models Estimating Nonlinear Grey-Box Models After Estimating Grey-Box Models Estimating Coefficients of ODEs to Fit Given Solution Estimate Model Using Zero/Pole/Gain Parameters Time Series Identification Estimating Time-Series Power Spectra Estimate Time-Series Power Spectra Using the GUI Estimate Time-Series Power Spectra at the Command Line Estimating AR and ARMA Models Estimating Polynomial Time-Series Models in the GUI Estimating AR and ARMA Models at the Command Line Estimating State-Space Time-Series Models Estimating State-Space Models at the Command Line Identify Time-Series Models at Command Line Estimating Nonlinear Models for Time-Series Data Estimating ARIMA Models Analyzing of Time-Series Models Recursive Model Identification General Form of Recursive Estimation Algorithm Kalman Filter Algorithm Recursive Estimation and Data Segmentation Techniques in System Identification Toolbox Model Analysis Validating Models After Estimation Plotting Models in the GUI Simulating and Predicting Model Output Simulation and Prediction in the GUI Simulation and Prediction at the Command Line Predict Using Time-Series Model Residual Analysis Impulse and Step Response Plots Frequency Response Plots Displaying the Confidence Interval Noise Spectrum Plots Pole and Zero Plots Analyzing MIMO Models Akaike's Criteria for Model Validation Troubleshooting Models Unstable Models Missing Input Variables Complicated Nonlinearities Spectrum Estimation Using Complex Data System Identification Toolbox Blocks Using System Identification Toolbox Blocks in Simulink Models Identifying Linear Models Simulating Identified Model Output in Simulink Simulate Identified Model Using Simulink Software System Identification Tool GUI
Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397
Download or read book Intelligent Information and Database Systems written by Ngoc Thanh Nguyen and published by Springer. This book was released on 2011-04-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNAI 6591 and LNCS 6592 constitutes the refereed proceedings of the Third International Conference on Intelligent Information and Database Systems, ACIIDS 2011, held in Daegu, Korea, in April 2011. The 110 revised papers presented together with 2 keynote speeches were carefully reviewed and selected from 310 submissions. The papers are thematically divided into two volumes; they cover the following topics: intelligent database systems, data warehouses and data mining, natural language processing and computational linguistics, semantic Web, social networks and recommendation systems, technologies for intelligent information systems, collaborative systems and applications, e-business and e-commerce systems, e-learning systems, information modeling and requirements engineering, information retrieval systems, intelligent agents and multi-agent systems, intelligent information systems, intelligent internet systems, intelligent optimization techniques, object-relational DBMS, ontologies and knowledge sharing, semi-structured and XML database systems, unified modeling language and unified processes, Web services and semantic Web, computer networks and communication systems.
Download or read book System Identification SYSID 03 written by Paul Van Den Hof and published by Elsevier. This book was released on 2004-06-29 with total page 2080 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Download or read book System Identification of Stochastic Nonlinear Dynamic Systems using Takagi Sugeno Fuzzy Models written by Salman Zaidi and published by kassel university press GmbH. This book was released on 2019-02-22 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some novel approaches to estimate Nonlinear Output Error (NOE) models using TS fuzzy models for a class of nonlinear dynamic systems having variability in their outputs is presented in this dissertation. Instead of using unrealistic assumptions about uncertainty, the most common of which is normality, the proposed methodology tends to capture effects caused by the real uncertainty observed in the data. The methodology requires that the identification method must be repeated offline a number of times under similar conditions. This leads to multiple inputoutput time series from the underlying system. These time series are preprocessed using the techniques of statistics and probability theory to generate the envelopes of response at each time instant. By incorporating interval data in fuzzy modelling and using the theory of symbolic interval-valued data, a TS fuzzy model with interval antecedent and consequent parameters is obtained. The proposed identification algorithm provides for a model for predicting the center-valued response as well as envelopes as the measure of uncertainty in system output.
Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.
Download or read book Modeling of Dynamic Systems written by Lennart Ljung and published by Prentice Hall. This book was released on 1994 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. MARKET: For practicing engineers who are faced with problems of modeling.
Download or read book Sustainable Development and Innovations in Marine Technologies written by Petar Georgiev and published by CRC Press. This book was released on 2019-08-22 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable Development and Innovations in Marine Technologies includes the papers presented at the 18th International Congress of the Maritime Association of the Mediterranean (IMAM 2019, Varna, Bulgaria, 9-11 September 2019). Sustainable Development and Innovations in Marine Technologies includes a wide range of topics: Aquaculture & Fishing; Construction; Defence & Security; Design; Dynamic response of structures; Degradation/ Defects in structures; Electrical equipment of ships; Human factors; Hydrodynamics; Legal/Social aspects; Logistics; Machinery & Control; Marine environmental protection; Materials; Navigation; Noise; Non-linear motions – manoeuvrability; Off-shore and coastal development; Off-shore renewable energy; Port operations; Prime movers; Propulsion; Safety at sea; Safety of Marine Systems; Sea waves; Seakeeping; Shaft & propellers; Ship resistance; Shipyards; Small & pleasure crafts; Stability; Static response of structures; Structures, and Wind loads. The IMAM series of Conferences started in 1978 when the first Congress was organised in Istanbul, Turkey. IMAM 2019 is the eighteenth edition, and in its nearly forty years of history, this biannual event has been organised throughout Europe. Sustainable Development and Innovations in Marine Technologies is essential reading for academics, engineers and all professionals involved in the area of sustainable and innovative marine technologies.
Download or read book Systems Biology written by Jens Nielsen and published by John Wiley & Sons. This book was released on 2017-03-21 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of the many different aspects of systems biology, resulting in an excellent overview of the experimental and computational approaches currently in use to study biological systems. Each chapter represents a valuable introduction to one specific branch of systems biology, while also including the current state of the art and pointers to future directions. Following different methods for the integrative analysis of omics data, the book goes on to describe techniques that allow for the direct quantification of carbon fluxes in large metabolic networks, including the use of 13C labelled substrates and genome-scale metabolic models. The latter is explained on the basis of the model organism Escherichia coli as well as the human metabolism. Subsequently, the authors deal with the application of such techniques to human health and cell factory engineering, with a focus on recent progress in building genome-scale models and regulatory networks. They highlight the importance of such information for specific biological processes, including the ageing of cells, the immune system and organogenesis. The book concludes with a summary of recent advances in genome editing, which have allowed for precise genetic modifications, even with the dynamic control of gene expression. This is part of the Advances Biotechnology series, covering all pertinent aspects of the field with each volume prepared by eminent scientists who are experts on the topic in question.
Download or read book Dynamical Systems with Applications using MATLAB written by Stephen Lynch and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to dynamical systems theory guides readers through theory via example and the graphical MATLAB interface; the SIMULINK® accessory is used to simulate real-world dynamical processes. Examples included are from mechanics, electrical circuits, economics, population dynamics, epidemiology, nonlinear optics, materials science and neural networks. The book contains over 330 illustrations, 300 examples, and exercises with solutions.
Download or read book The Control Handbook three volume set written by William S. Levine and published by CRC Press. This book was released on 2018-10-08 with total page 3379 pages. Available in PDF, EPUB and Kindle. Book excerpt: At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.
Download or read book Modeling and Simulation of Systems Using MATLAB and Simulink written by Devendra K. Chaturvedi and published by CRC Press. This book was released on 2017-12-19 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.
Download or read book Exact and Approximate Modeling of Linear Systems written by Ivan Markovsky and published by SIAM. This book was released on 2006-01-01 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title elegantly introduces the behavioral approach to mathematical modeling, an approach that requires models to be viewed as sets of possible outcomes rather than to be a priori bound to particular representations. The authors discuss exact and approximate fitting of data by linear, bilinear, and quadratic static models and linear dynamic models, a formulation that enables readers to select the most suitable representation for a particular purpose. This book presents exact subspace-type and approximate optimization-based identification methods, as well as representation-free problem formulations, an overview of solution approaches, and software implementation. Readers will find an exposition of a wide variety of modeling problems starting from observed data. The presented theory leads to algorithms that are implemented in C language and in MATLAB.
Download or read book Algebraic Identification and Estimation Methods in Feedback Control Systems written by Hebertt Sira-Ramírez and published by John Wiley & Sons. This book was released on 2014-03-13 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology. Key features: Presents a radically new approach to online parameter and state estimation. Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. Includes examples in a variety of physical applications with experimental results. Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.