EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Silicon and Silicide Nanowires

Download or read book Silicon and Silicide Nanowires written by Yu Huang and published by CRC Press. This book was released on 2016-04-19 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale materials are showing great promise in various electronic, optoelectronic, and energy applications. Silicon (Si) has especially captured great attention as the leading material for microelectronic and nanoscale device applications. Recently, various silicides have garnered special attention for their pivotal role in Si device engineering

Book Nanowires

    Book Details:
  • Author : Simas Rackauskas
  • Publisher : BoD – Books on Demand
  • Release : 2019-04-10
  • ISBN : 1789859050
  • Pages : 122 pages

Download or read book Nanowires written by Simas Rackauskas and published by BoD – Books on Demand. This book was released on 2019-04-10 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanowires are attracting wide scientific interest due to the unique properties associated with their one-dimensional geometry. Developments in the understanding of the fundamental principles of the nanowire growth mechanisms and mastering functionalization provide tools to control crystal structure, morphology, and the interactions at the material interface, and create characteristics that are superior to those of planar geometries. This book provides a comprehensive overview of the most important developments in the field of nanowires, starting from their synthesis, discussing properties, and finalizing with nanowire applications. The book consists of two parts: the first is devoted to the synthesis of nanowires and characterization, and the second investigates the properties of nanowires and their applications in future devices.

Book Nanoscale Contact Engineering for Si Silicide Nanowire Devices

Download or read book Nanoscale Contact Engineering for Si Silicide Nanowire Devices written by Yung-Chen Lin and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ∼28.6 μΩ*cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on MnSi nanowire shows an abrupt resistance reduction due to the spin ordering at ~29.7 K.A negative magnetoresistance (MR) ~1.8% under 5 Tesla at 1.6 K is achieved, demonstrating the ferromagnetic behavior of MnSi. Furthermore, using the MnSi/p-Si/MnSi heterostructure, we have studied the charge injection at various temperatures via the Schottky barrier, and the spin scattering was observed through magnetotransport studies of MnSi/p-Si/MnSi heterojunction. Our results represent the first report of magnetic contact fabrication through the formation of single crystal heterojunction nanowires and the first demonstration of spin injection and detection in such Si nanowire devices. The magnetic silicides approach thus opens a new pathway to create ferromagnetic/semiconductor junction with clean and sharp interface, and maysignificantly impact the future of spintronics. Beyond those applications, silicide phase control at nanoscale is investigated. Three nickel phases, Ni31Si12, Ni2Si and NiSi2 are observed in one step annealing at 550 oC. NiSi2 grows initially through the Si NW and then the area close to nickel pad transforms into the nickel-rich phase, Ni31Si12. With prolonged annealing over 5 minutes, the Ni2Si starts to show up in between Ni31Si12 and NiSi2. The growth sequence is different from the thin film system where Ni2Si usually appears as the initial phase in the beginning as the annealing temperature is higher than 400 oC. Interfacial energy differences and surface free energy are believed to play an important role here at the nanoscale, which lead to the formation of normally unfavorable silicide phases in Si NWs. In addition, Si/SiOx core/shell NW structure is used to explore the phase transformation of silicides in the structure-confined nano environment. Nickel silicides in the structure-confined core/shell Si NW shares the similar phase formation sequences as those appeared in the bared SiNWs, while the growth rate is significantly retarded. This may be attributed to the high compressive stress built-in in the core/shell NW structure that retards the diffusion of the nickel atom as well as limits the volume expansion of the metal-rich phases. As a result, the high stress at this finite scale hinders the continuous growth of Ni31Si12 into the core/shell NWs and totally eliminates the formation of Ni2Si in core/shell NWs with thick oxide shells (~ 50 nm). Through these studies, we have demonstrated first time the phase formation sequences of nickel silicides in Si and Si/SiOx NW structures, which is of great importance for reliable contact engineering for Si NW devices. Furthermore, we have provided a clear picture of the hindered nickel silicide growth in confined nanoscale environment and showed the deviated behavior of silicides growth under stress. The information rendered here will be useful for Si NW device applications as well as for the silicon device engineering at nanoscale in general. To further investigate the oxide shell effect, Mn5Si3 and Fe5Ge3 NW were grown within various oxide thickness to explore the nucleation and growth in the nanowire structure. A oxide shell exerted a compressive stress on the silicide or germanide materials will make those materials with single-crystal properties. Interestingly, single-crystal growth of contact materials can be also implemented for germanide materials. The iron-rich germanide, Fe5Ge3, was successfully grown with single-crystal properties. It shows ferromagnetic properties with a Curie temperature above the room temperature verified by magnetic force microscope (MFM). Two different epitaxial relations found at germanide/germanium interface due to the different sizes of the germanium NW templates. These two different crystal structures exhibited magnetic anisotropy in magnetic force microscope (MFM) measurement, showing differently preferred domain orientations. In-plane and out-of-plane magnetization in the Fe5Ge3 NWs are observed in our experiment. The crystal orientation or engineering stress may have influence on the magnetic domain structure. This ferromagnetic contact material may open the way for spintronics to grow the magnetic materials on the semiconducting materials and control the direction of magnetization in the future. Those silicide studies indicated silicide metal-heterojunction field effect transistor has excellent device performance. In addition, Si channel region can be shrunk to less than 10 nm and also keep semiconducting properties without high leakage current. This approach has the potential for future nanoelectronics. However, silicide phase transformation shows a deviated behavior from the studies in bulk system. It may be associated with stress effect or nucleation behavior at nanosclae, leading the different formation phase or sequence. For those interesting phenomena, it has attracted more and more attention and may gain more insight studies in the near future.

Book Synthesis  Characterization  and Theoretical Studies of Room Temperature Ferromagnetic Silicide Nanowires for Spintronic Applications

Download or read book Synthesis Characterization and Theoretical Studies of Room Temperature Ferromagnetic Silicide Nanowires for Spintronic Applications written by Ángel Roberto Ruiz Reyes and published by . This book was released on 2018 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Nanowires

    Book Details:
  • Author : Jie Xiang
  • Publisher : Royal Society of Chemistry
  • Release : 2015
  • ISBN : 1849738157
  • Pages : 463 pages

Download or read book Semiconductor Nanowires written by Jie Xiang and published by Royal Society of Chemistry. This book was released on 2015 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely reference from leading experts on semiconductor nanowires and their applications.

Book Properties of Metal Silicides

Download or read book Properties of Metal Silicides written by Karen Maex and published by Institution of Electrical Engineers. This book was released on 1995 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of silicon alloyed with metals are presented here for silicides of both transition and rare earth metals.

Book Materials for Sustainable Energy

Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Book Thermoelectric Nanomaterials

Download or read book Thermoelectric Nanomaterials written by Kunihito Koumoto and published by Springer Science & Business Media. This book was released on 2013-07-20 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also indicates the applications of thermoelectrics expected for the large emerging energy market. This book has a wide appeal and application value for anyone being interested in state-of-the-art thermoelectrics and/or actual viable applications in nanotechnology.

Book Introduction to Magnetism and Magnetic Materials

Download or read book Introduction to Magnetism and Magnetic Materials written by David Jiles and published by CRC Press. This book was released on 2015-09-18 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin

Book Silicides  Fundamentals   Applications

Download or read book Silicides Fundamentals Applications written by Francois D'heurle and published by World Scientific. This book was released on 2000-12-18 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicides were introduced into the technology of electronic devices some thirty years ago; since then, they have been continuously used to form both ohmic and rectifying contacts to silicon. Silicides are also important for other applications (thermoelectric devices and structural applications, such as jet engines), but it is not easy to find an updated reference containing both their basic properties, either chemical or physical, and the latest applications.The 16th Course of the International School of Solid State Physics, held in Erice (Italy) in the late spring of 1999, was intended to break artificial barriers between disciplines, and to gather people concerned with the properties and applications of silicides, regardless of the formal fields to which they belong, or of the practical goals they pursue. This book is therefore concerned with theory as well as applications, metallurgy as well as physics, and materials science as well as microelectronics.

Book VLSI Metallization

Download or read book VLSI Metallization written by Norman G. Einspruch and published by Academic Press. This book was released on 2014-12-01 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: VLSI Electronics Microstructure Science, Volume 15: VLSI Metallization discusses the various issues and problems related to VLSI metallization. It details the available solutions and presents emerging trends. This volume is comprised of 10 chapters. The two introductory chapters, Chapter 1 and 2 serve as general references for the electrical and metallurgical properties of thin conducting films. Subsequent chapters review the various aspects of VLSI metallization. The order of presentation has been chosen to follow the common processing sequence. In Chapter 3, some relevant metal deposition techniques are discussed. Chapter 4 presents the methods of VLSI lithography and etching. Conducting films are first deposited at the gate definition step; therefore, the issues related to gate metallization are discussed next in Chapter 5.In Chapter 6, contact metallization is elaborated, and Chapter 7 is devoted to multilevel metallization schemes. Long-time reliability is the subject of Chapter 8, which discusses the issues of contact and interconnect electromigration. GaAs metallization is tackled in Chapter 9. The volume concludes with a general discussion of the functions of interconnect systems in VLSI. Materials scientists, processing and design engineers, and device physicists will find the book very useful.

Book Advances in Rapid Thermal and Integrated Processing

Download or read book Advances in Rapid Thermal and Integrated Processing written by F. Roozeboom and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid thermal and integrated processing is an emerging single-wafer technology in ULSI semiconductor manufacturing, electrical engineering, applied physics and materials science. Here, the physics and engineering of this technology are discussed at the graduate level. Three interrelated areas are covered. First, the thermophysics of photon-induced annealing of semiconductor and related materials, including fundamental pyrometry and emissivity issues, the modelling of reactor designs and processes, and their relation to temperature uniformity. Second, process integration, treating the advances in basic equipment design, scale-up, integrated cluster-tool equipment, including wafer cleaning and integrated processing. Third, the deposition and processing of thin epitaxial, dielectric and metal films, covering selective deposition and epitaxy, integrated processing of layer stacks, and new areas of potential application, such as the processing of III-V semiconductor structures and thin- film head processing for high-density magnetic data storage.

Book Micro and Nanomanufacturing Volume II

Download or read book Micro and Nanomanufacturing Volume II written by Mark J. Jackson and published by Springer. This book was released on 2017-10-28 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of micro and nanofabrication techniques, and applies established and research laboratory manufacturing techniques to a wide variety of materials. It is a companion volume to “Micro and Nanomanufacturing” (2007) and covers new topics such as aligned nanowire growth, molecular dynamics simulation of nanomaterials, atomic force microscopy for microbial cell surfaces, 3D printing of pharmaceuticals, microvascular coaptation methods, and more. The chapters also cover a wide variety of applications in areas such as surgery, auto components, living cell detection, dentistry, nanoparticles in medicine, and aerospace components. This is an ideal text for professionals working in the field, and for graduate students in micro and nanomanufacturing courses.

Book Nanoengineering

Download or read book Nanoengineering written by Patricia I. Dolez and published by Elsevier. This book was released on 2015-05-26 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoengineering: Global Approaches to Health and Safety Issues provides a global vision on the impact of engineered nanomaterials both for the consumer/general public and in occupational settings. The book also presents a hint on what can be expected for the future from nanomaterials and their effects on our lives, both at home and at work. In addition, users will find valuable information on nanomaterials' irreplaceable value and their risks for health, safety, and environmental issues. Case studies illustrate key points and provide information on important processes. Provides a global vision on the different aspects related to nanosafety and a synthesis of the information available Gives all the information required for precision decision-making in a single book, offering both general public and occupational aspects Contains separate chapters on each subject written by world-renowned contributors Presents a complete vision of the problem, with perspectives on global approaches Includes case studies that illustrate important processes

Book Superlubricity

Download or read book Superlubricity written by Ali Erdemir and published by Elsevier. This book was released on 2007-03-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superlubricity is defined as a sliding regime in which friction or resistance to sliding vanishes. It has been shown that energy can be conserved by further reducing/removing friction in moving mechanical systems and this book includes contributions from world-renowned scientists who address some of the most fundamental research issues in overcoming friction. Superlubricity reviews the latest methods and materials in this area of research that are aimed at removing friction in nano-to-micro scale machines and large scale engineering components. Insight is also given into the atomic-scale origins of friction in general and superlubricity while other chapters focus on experimental and practical aspects or impacts of superlubricity that will be very useful for broader industrial community. * Reviews the latest fundamental research in superlubricity today* Presents 'state-of-the-art' methods, materials, and experimental techniques* Latest developments in tribomaterials, coatings, and lubricants providing superlubricity

Book Swift Heavy Ions for Materials Engineering and Nanostructuring

Download or read book Swift Heavy Ions for Materials Engineering and Nanostructuring written by Devesh Kumar Avasthi and published by Springer Science & Business Media. This book was released on 2011-05-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.