Download or read book Ionized Physical Vapor Deposition written by and published by Academic Press. This book was released on 1999-10-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides the first comprehensive look at a pivotal new technology in integrated circuit fabrication. For some time researchers have sought alternate processes for interconnecting the millions of transistors on each chip because conventional physical vapor deposition can no longer meet the specifications of today's complex integrated circuits. Out of this research, ionized physical vapor deposition has emerged as a premier technology for the deposition of thin metal films that form the dense interconnect wiring on state-of-the-art microprocessors and memory chips.For the first time, the most recent developments in thin film deposition using ionized physical vapor deposition (I-PVD) are presented in a single coherent source. Readers will find detailed descriptions of relevant plasma source technology, specific deposition systems, and process recipes. The tools and processes covered include DC hollow cathode magnetrons, RF inductively coupled plasmas, and microwave plasmas that are used for depositing technologically important materials such as copper, tantalum, titanium, TiN, and aluminum. In addition, this volume describes the important physical processes that occur in I-PVD in a simple and concise way. The physical descriptions are followed by experimentally-verified numerical models that provide in-depth insight into the design and operation I-PVD tools.Practicing process engineers, research and development scientists, and students will find that this book's integration of tool design, process development, and fundamental physical models make it an indispensable reference.Key Features:The first comprehensive volume on ionized physical vapor depositionCombines tool design, process development, and fundamental physical understanding to form a complete picture of I-PVDEmphasizes practical applications in the area of IC fabrication and interconnect technologyServes as a guide to select the most appropriate technology for any deposition application*This single source saves time and effort by including comprehensive information at one's finger tips*The integration of tool design, process development, and fundamental physics allows the reader to quickly understand all of the issues important to I-PVD*The numerous practical applications assist the working engineer to select and refine thin film processes
Download or read book High Power Impulse Magnetron Sputtering written by Daniel Lundin and published by Elsevier. This book was released on 2019-08-30 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications is an in-depth introduction to HiPIMS that emphasizes how this novel sputtering technique differs from conventional magnetron processes in terms of both discharge physics and the resulting thin film characteristics. Ionization of sputtered atoms is discussed in detail for various target materials. In addition, the role of self-sputtering, secondary electron emission and the importance of controlling the process gas dynamics, both inert and reactive gases, are examined in detail with an aim to generate stable HiPIMS processes. Lastly, the book also looks at how to characterize the HiPIMS discharge, including essential diagnostic equipment. Experimental results and simulations based on industrially relevant material systems are used to illustrate mechanisms controlling nucleation kinetics, column formation and microstructure evolution.
Download or read book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering written by Tuomas Hänninen and published by Linköping University Electronic Press. This book was released on 2018-02-13 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C2H2) in addition to N2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated. The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N2/Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V. The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride. The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiNx/CNx structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.
Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.
Download or read book Reactive Sputter Deposition written by Diederik Depla and published by Springer Science & Business Media. This book was released on 2008-06-24 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.
Download or read book High Power Impulse Magnetron Sputtering written by Daniel Lundin and published by Elsevier. This book was released on 2019-08-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications is an in-depth introduction to HiPIMS that emphasizes how this novel sputtering technique differs from conventional magnetron processes in terms of both discharge physics and the resulting thin film characteristics. Ionization of sputtered atoms is discussed in detail for various target materials. In addition, the role of self-sputtering, secondary electron emission and the importance of controlling the process gas dynamics, both inert and reactive gases, are examined in detail with an aim to generate stable HiPIMS processes. Lastly, the book also looks at how to characterize the HiPIMS discharge, including essential diagnostic equipment. Experimental results and simulations based on industrially relevant material systems are used to illustrate mechanisms controlling nucleation kinetics, column formation and microstructure evolution. - Includes a comprehensive description of the HiPIMS process from fundamental physics to applications - Provides a distinctive link between the process plasma and thin film communities - Discusses the industrialization of HiPIMS and its real world applications
Download or read book Cathodic Arcs written by André Anders and published by Springer Science & Business Media. This book was released on 2009-07-30 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cathodic arcs are among the longest studied yet least understood objects in science. Plasma-generating, tiny spots appear on the cathode; they are highly dynamic and hard to control. With an approach emphasizing the fractal character of cathode spots, strongly fluctuating plasma properties are described such as the presence of multiply charged ions that move with supersonic velocity. Richly illustrated, the book also deals with practical issues, such as arc source construction, macroparticle removal, and the synthesis of dense, well adherent coatings. The book spans a bridge from plasma physics to coatings technology based on energetic condensation, appealing to scientists, practitioners and graduate students alike.
Download or read book Tribology of Diamond like Carbon Films written by Christophe Donnet and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights some of the most important structural, chemical, mechanical and tribological characteristics of DLC films. It is particularly dedicated to the fundamental tribological issues that impact the performance and durability of these coatings. The book provides reliable and up-to-date information on available industrial DLC coatings and includes clear definitions and descriptions of various DLC films and their properties.
Download or read book Oxidation of Tungsten written by Vincent David Barth and published by . This book was released on 1961 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The report presents a detailed review of available information on the oxidation of W and its alloys. W is relatively inert below 700 C. As the temperature is increased above this level, however, oxidation becomes progressively more rapid, reaching catastrophic rates at temperatures around 1200 C and above. Various theories for the mechanism and rates of W oxidation at different temperatures are reviewed, and the effect of pressure and water vapor on the stability of W oxides is discussed in detail. The elevatedtemperature reactions of W with other materials, such as refractory oxides, and with gases other than oxygen also are covered. Information on the protection of W by alloying and coating is included. (Author).
Download or read book Handbook of Sputter Deposition Technology written by Kiyotaka Wasa and published by William Andrew. This book was released on 2012-12-31 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly updated new edition includes an entirely new team of contributing authors with backgrounds specializing in the various new applications of sputtering technology. It forms a bridge between fundamental theory and practical application, giving an insight into innovative new materials, devices and systems. Organized into three parts for ease of use, this Handbook introduces the fundamentals of thin films and sputtering deposition, explores the theory and practices of this field, and also covers new technology such as nano-functional materials and MEMS. Wide varieties of functional thin film materials and processing are described, and experimental data is provided with detailed examples and theoretical descriptions. - A strong applications focus, covering current and emerging technologies, including nano-materials and MEMS (microelectrolmechanical systems) for energy, environments, communications, and/or bio-medical field. New chapters on computer simulation of sputtering and MEMS completes the update and insures that the new edition includes the most current and forward-looking coverage available - All applications discussed are supported by theoretical discussions, offering readers both the "how" and the "why" of each technique - 40% revision: the new edition includes an entirely new team of contributing authors with backgrounds specializing in the various new applications that are covered in the book and providing the most up-to-date coverage available anywhere
Download or read book The Foundations of Vacuum Coating Technology written by Donald M. Mattox and published by William Andrew. This book was released on 2018-08-21 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Foundations of Vacuum Coating Technology, Second Edition, is a revised and expanded version of the first edition, which was published in 2003. The book reviews the histories of the various vacuum coating technologies and expands on the history of the enabling technologies of vacuum technology, plasma technology, power supplies, and low-pressure plasma-enhanced chemical vapor deposition. The melding of these technologies has resulted in new processes and products that have greatly expanded the application of vacuum coatings for use in our everyday lives. The book is unique in that it makes extensive reference to the patent literature (mostly US) and how it relates to the history of vacuum coating. The book includes a Historical Timeline of Vacuum Coating Technology and a Historical Timeline of Vacuum/Plasma Technology, as well as a Glossary of Terms used in the vacuum coating and surface engineering industries. - History and detailed descriptions of Vacuum Deposition Technologies - Review of Enabling Technologies and their importance to current applications - Extensively referenced text - Patents are referenced as part of the history - Historical Timelines for Vacuum Coating Technology and Vacuum/Plasma Technology - Glossary of Terms for vacuum coating
Download or read book Spectroscopic Ellipsometry written by Hiroyuki Fujiwara and published by John Wiley & Sons. This book was released on 2007-09-27 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ellipsometry is a powerful tool used for the characterization of thin films and multi-layer semiconductor structures. This book deals with fundamental principles and applications of spectroscopic ellipsometry (SE). Beginning with an overview of SE technologies the text moves on to focus on the data analysis of results obtained from SE, Fundamental data analyses, principles and physical backgrounds and the various materials used in different fields from LSI industry to biotechnology are described. The final chapter describes the latest developments of real-time monitoring and process control which have attracted significant attention in various scientific and industrial fields.
Download or read book Metallic Biomaterials for Medical Applications written by Liqiang Wang and published by Frontiers Media SA. This book was released on 2022-01-17 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Gas Phase Synthesis of Nanoparticles written by Yves Huttel and published by John Wiley & Sons. This book was released on 2017-06-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifications of this method resulting in different specialized techniques, while the third discusses the post-growth treatment that can be applied to the nanoparticles. The whole is rounded off by a review of future perspectives and the challenges facing the scientific and industrial communities. An excellent resource for anyone working with the synthesis of nanoparticles, both in academia and industry.
Download or read book Nanotechnology and Nanoscience to manage SARS CoV 2 Variants of Concern written by Ajeet Kaushik and published by Frontiers Media SA. This book was released on 2023-10-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The impact of COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. In the wake of the Delta and Omicron variants – at the time of writing, April 2022, the most impactful and fastest spreading Variants of Concern (VOCs) - it is increasingly apparent that the scientific community must continue striving to mitigate the many clinical and public health management challenges arising from the pandemic.
Download or read book Physical vapor deposition and thermal stability of hard oxide coatings written by Ludvig Landälv and published by Linköping University Electronic Press. This book was released on 2019-04-26 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite (WC-Co) coated with different combinations of carbide, nitride, and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings, mainly α-Al2O3, are especially desired because of their high hot-hardness, chemical inertness with respect to the workpiece, and their low friction. The search for possible alloy elements, which may facilitate the deposition of such oxides by means of physical vapor deposition (PVD) techniques, has been the goal of this thesis. The sought alloy should form thermodynamically stable or metastable compounds, compatible with the temperature of use in metal cutting application. This thesis deals with process development and coating characterization of such new oxide alloy thin films, focusing on the Al-V-O, Al-Cr-Si-O, and Cr-Zr-O systems. Alloying aluminum oxide with iso-valent vanadium is a candidate for forming the desired alloys. Therefore, coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited with reactive sputter deposition. X-ray diffraction showed three different crystal structures depending on V-metal fraction in the coating: α-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, (63 - 42 at.% V), and a gamma-alumina-like solid solution at lower V-content, (18 and 7 at.%), were observed, the later was shifted to larger d-spacing compared to the pure γ-Al2O3 sample obtained if deposited with only Al-target. Annealing the Al-rich coatings in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 °C for 42 at.% V and 700 °C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure γ-Al2O3-coating which transformed to α-Al2O3 after annealing to 1100° C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The hardness then decreases with increasing V-content, larger than 7 at.% V metal fraction. Doping the Al2O3 coating with 7 at.% V resulted in a significant surface smoothening compared to the binary oxide. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings. This work increases the understanding of this complicated material system with respect to possible phases formed with pulsed DC magnetron sputtering deposition as well as their response to annealing in air. The inherent difficulties of depositing insulating oxide films with PVD, requiring a closed electrical circuit, makes the investigation of process stability an important part of this research. In this context, I investigated the influence of adding small amount of Si in Al-Cr cathode on the coating properties in a pulsed DC industrial cathodic arc system and the plasma characteristics, process parameters, and coating properties in a lab DC cathodic arc system. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating. The effect of Si in the Al-Cr cathode in the industrial cathodic arc system showed slight improvements on the cathode erosion but Si was found in all coatings where Si was added in the cathode. The Si addition promoted the formation of the B1-like metastable cubic oxide phase and the incorporation led to reduced or equal hardness values compared to the corresponding Si-free processes. The DC-arc plasma study on the same material system showed only small improvements in the cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at.% Si in the Al70Cr30-cathode. The presence of volatile SiO species could be confirmed through plasma analysis, but the loss of Si through these species was negligible, since the coating composition matched the cathode composition also under these conditions. The positive effect of added Si on the process stability at the cathode surface, should be weighed against Si incorporation in the coating. This incorporation seems to lead to a reduction in mechanical properties in the as-deposited coatings and promote the formation of a B1-like cubic metastable oxide structure for the (Al,Cr)2O3 oxide. This formation may or may not be beneficial for the final application since literature indicates a slight stabilization of the metastable phase upon Si-incorporation, contrary to the effect of Cr, which stabilizes the α-phase. The thermal stability of alloys for metal cutting application is crucial for their use. Previous studies on another alloy system, Cr-Zr-O, had shown solid solution, for Cr-rich compositions in that material system, in the sought corundum structure. The thermal stability of α-Cr0.28Zr0.10O0.61 coating deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was therefore investigated here after annealing in vacuum up to 870 °C. The annealed samples showed transformation of α-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc-Cr. The instability of the α-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. Further in situ synchrotron XRD annealing studies on the α-Cr0.28Zr0.10O0.61 coating in air and in vacuum showed increased stability for the air annealed sample up to at least 975 °C, accompanied with a slight increase in ex-situ measured nanohardness. The onset temperature for formation of tetragonal ZrO2 was similar to that for isothermally vacuum annealing. The synchrotron-vacuum annealed coating again decomposed into bcc-Cr and t-ZrO2, with an addition of monoclinic–ZrO2 due to grain growth. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects present with small grains sizes, may prove to be useful for metal cutting applications. The observed phase segregation of α-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudobinary oxide system also opens up design routes for pseudobinary oxides with tunable microstructural and mechanical properties.
Download or read book Introduction to Surface Engineering written by P. A. Dearnley and published by Cambridge University Press. This book was released on 2017-01-16 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly illustrated reference work covers the three principal types of surface technologies that best protect engineering devices and products: diffusion technologies, deposition technologies, and other less commonly acknowledged surface engineering (SE) techniques. Various applications are noted throughout the text and additionally whole chapters are devoted to specific SE applications across the automotive, gas turbine engine (GTE), metal machining, and biomedical implant sectors. Along with the benefits of SE, this volume also critically examines SE's limitations. Materials degradation pathways - those which can and those which cannot be mitigated by SE - are rigorously explained. Written from a scientific, materials engineering perspective, this concise text is supported by high-quality images and photo-micrographs which show how surfaces can be engineered to overcome the limits of conventionally produced materials, even in complex or hostile operating environments. This book is a useful resource for undergraduate and postgraduate students as well as professional engineers.