EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterization of Sulfonic Acid Containing Polyimides for Polymer Electrolyte Membranes  PEMs  in Fuel Cells

Download or read book Synthesis and Characterization of Sulfonic Acid Containing Polyimides for Polymer Electrolyte Membranes PEMs in Fuel Cells written by Hyoung-Juhn Kim and published by . This book was released on 2002 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluorinated Materials for Energy Conversion

Download or read book Fluorinated Materials for Energy Conversion written by Tsuyoshi Nakajima and published by Elsevier. This book was released on 2005-05-20 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluorinated Materials for Energy Conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering. Contains practical information, supported by examples Provides an update on recent developments in the field Written by specialists working in fluorine chemistry, electrochemistry, polymer and solid state chemistry

Book Perfluorinated Polymer Electrolyte Membranes for Fuel Cells

Download or read book Perfluorinated Polymer Electrolyte Membranes for Fuel Cells written by Tatsuhiro Okada and published by Nova Science Pub Incorporated. This book was released on 2008 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors focus on the ion and water transport characteristics in Nafion and other perfluorinated ionomer membranes that are recently attracting attention in various fields such as water electrolysis, mineral recovery, electrochemical devises and energy conversion. Methodology of measurements and data analysis is first presented that enables basic characterisation of transport parameters in the perfluorinated ionomer membranes. Cation exchange isotherm data are collected in binary cation systems, with the aim to see the behaviours of cationic species that exist with H+ in the membrane. Water transference coefficients, ionic transference numbers, ionic mobilities and other membrane transport parameters are measured in single and mixed counter cation systems using electrochemical methods. Diffusion coefficients of water and cations are also measured by pulsed-field-gradient spin-echo NMR (PGSE-NMR) at various temperatures in different kinds of perfluorinated ionomer membranes. The results are discussed in two perspectives. One is to predict the hydration state in perfluorosulfonated ionomer membranes in relation to the possible degradation of performances in fuel cells under contaminated conditions with foreign cations. An analytical formulation of membrane transport equations with proper boundary conditions is proposed, and using various parameters of membrane transport, a simple diagnosis of water dehydration problem is carried out. This analysis leads one to an effective control of fuel cell operation conditions, especially from viewpoint of proper water management. The others are to elucidate the ion and water transport mechanisms in the membrane in relation to polymer structures (e.g., different ion exchange capacity), and to propose a new design concept of polymer electrolyte membranes for fuel cell applications. Additionally for this purpose methanol and other alcohols are penetrated into the membrane, and alcohol permeability, membrane swelling, ionic conductivity and diffusion coefficients of water and CH3 are measured systematically for various kinds of membranes to cope with the problem of methanol crossover in direct methanol fuel cells (DMFCs).It is found that in order to realise a high ionic conductivity in the membrane, one should aim at a polymer structure through molecular design that takes into account the relative size of ions with a hydration shell against the size and atmosphere of ionic channels. For DMFC, a partially cross-linked polymer chain with high degree of hydrophilic ion transport paths based on phase-separated structures is recommended. Various possibilities of such polymer electrolytes are discussed.

Book Handbook of Fluoropolymer Science and Technology

Download or read book Handbook of Fluoropolymer Science and Technology written by Dennis W. Smith and published by John Wiley & Sons. This book was released on 2014-05-27 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Fluoropolymer Science and Technology A comprehensive handbook on fluoropolymer synthesis, characterization, and processing Fluoropolymers, one of the more durable classes of polymer materials, are known to enable novel technologies as a result of their remarkable properties. As key components in industry applications, fluoropolymers have established commercial interest and scientists have discovered more efficient approaches of handling them. This book reviews up-to-date fluoropolymer platforms as well as recently discovered methods for the preparation of fluorinated materials. It focuses on synthesis, characterization, and processing aspects, providing guidelines for practicing scientists and engineers. In addition, the book covers: Concepts and studies from leading international laboratories, including academia, government, and industrial institutions Emerging technologies and applications in energy, optics, space exploration, fuel cells, microelectronics, gas separation membranes, biomedical instrumentation, and more Current environmental concerns associated with fluoropolymers, relevant regulations, and growth opportunities Overall, the chapters provide coverage of chemical methods and help the reader further understand how fluoropolymer research provides solutions for material challenges. The concepts in this book also inspire professionals to identify new markets and funding sources for fluoropolymer research and development.

Book Conducting Polymers and Solid Polymer Electrolyte Components

Download or read book Conducting Polymers and Solid Polymer Electrolyte Components written by Mark A. Odian and published by . This book was released on 1995 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2003 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Synthesis  Characterization  and Electrochemical Analysis of Structured Polymer Electrolytes Having Strong Ionic Interactions

Download or read book The Synthesis Characterization and Electrochemical Analysis of Structured Polymer Electrolytes Having Strong Ionic Interactions written by Sebastian T. Russell and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolytes, ionic monomers catenated into a macromolecule, have received a considerable attention in the past decade as they combine the mechanical benefits of flexible chain with the ionic properties of liquid electrolytes. For this reason, they have been widely accepted as potential ion conducting membrane candidates for electrolyzers, energy storage devices, and desalination applications. In efforts to improve the efficiency of polymer electrolyte separators a block copolymer paradigm has been employed. This material's strategy allows for a spatial separation of the components that control the mechanical and electrochemical properties and thus enables independent engineering of each. Charge - neutral block copolymers (CN-BCPs), a diblock copolymer containing a polyelectrolyte block, attempt to leverage this paradigm, however, to date, the impact ions have on the CN-BCP self-assembly is still an open question. In this dissertation, we are devoted to uncovering the fundamental impact of ionic interactions on CN-BCP self-assembly in bulk and thin-films.

Book Handbook of Fluoropolymer Science and Technology

Download or read book Handbook of Fluoropolymer Science and Technology written by Dennis W. Smith and published by John Wiley & Sons. This book was released on 2014-05-05 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Fluoropolymer Science and Technology A comprehensive handbook on fluoropolymer synthesis, characterization, and processing Fluoropolymers, one of the more durable classes of polymer materials, are known to enable novel technologies as a result of their remarkable properties. As key components in industry applications, fluoropolymers have established commercial interest and scientists have discovered more efficient approaches of handling them. This book reviews up-to-date fluoropolymer platforms as well as recently discovered methods for the preparation of fluorinated materials. It focuses on synthesis, characterization, and processing aspects, providing guidelines for practicing scientists and engineers. In addition, the book covers: Concepts and studies from leading international laboratories, including academia, government, and industrial institutions Emerging technologies and applications in energy, optics, space exploration, fuel cells, microelectronics, gas separation membranes, biomedical instrumentation, and more Current environmental concerns associated with fluoropolymers, relevant regulations, and growth opportunities Overall, the chapters provide coverage of chemical methods and help the reader further understand how fluoropolymer research provides solutions for material challenges. The concepts in this book also inspire professionals to identify new markets and funding sources for fluoropolymer research and development.

Book Characterization of Self Assembly and Charge Transport in Model Polymer Electrolyte Membranes

Download or read book Characterization of Self Assembly and Charge Transport in Model Polymer Electrolyte Membranes written by Keith Morgan Beers and published by . This book was released on 2012 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is broad interest in creating polymer electrolyte membranes (PEMs) that have a charged hydrophilic nanophase, where the size and geometry of the phase can be precisely controlled. The applications for such materials range from portable power generating devices to water purification. There is a need to better characterize the self-assembly, thermodynamics, and performance of both current and future PEMs. To this end a series of chapters is presented, that explore the development of techniques, equipment, methods, and materials to enable further progress in the field. The interaction of PEMs with external ionic solutions can be used to determine fundamental thermodynamic properties of the ions that reside within the membrane itself. Traditional techniques used to probe ions in PEMs, such as conductivity, can be greatly enhanced by knowing the number of dissociated ions and their activity coefficients. A technique is presented that provides one of the first methods able to quantify such properties in PEMs. The ionic species in PEMs are believed to reside in nanoscale ionic aggregates. Only recently have researchers begun to focus on the properties of this aggregation in regards to PEM performance. A summary of this phenomenon, as well as speculation on its effect on transport and thermodynamic properties is presented. In addition, evidence that suggests block copolymers offer a method of inhibiting aggregate formation is discussed. Characterization of PEM morphology is critical to properly understand structure-function relationships. Due to a lack of proper equipment, the morphological characterization of PEMs has been mostly limited to the dry state. The design and operation of a novel sample stage, used to simultaneously measure morphology and conductivity in humid air as a function of temperature and relative humidity is presented. Precise control over humidity and accurate determination of morphology and conductivity over a wide range of temperatures is shown. At present there is an incomplete understanding of the thermodynamic interaction between PEMs and water of varying activity. The morphology, water uptake, and proton conductivity of sulfonated polystyrene-block-polyethylene (PSS-PE) was studied under controlled relative humidity (RH) and in liquid water. Extrapolation of the domain size, water uptake, and conductivity in humid vapor to RH = 100% allowed for an accurate comparison between the properties of PSS-PE hydrated in saturated vapor and in liquid water. Absent from this system was Schroeder's Paradox, which expects the properties in saturated water vapor to be less than those obtained in liquid water. Polymers that are semi-crystalline are ubiquitous as commercial polymers because of their mechanical properties. Little is known about the effects of polymer crystallization on PEM structure and performance. The model system, PSS-PE, was synthesized at a variety of molecular weights to probe how crystallization affects performance for a variety of conducting domain sizes. Results are shown that indicate crystallization disrupts the self-assembly of low molecular weight PEMs, resulting in poor water uptake and proton conductivity in small domains. Increasing domain size results in less morphological disruption, leading to an improvement in performance at larger domain sizes. This work improves upon the ability of researchers to characterize and understand the relationship between the structure and performance of PEMs. The findings presented herein provide further understanding toward the goal of rational design of nanostructured membranes that show improved conductivity in a variety of conditions.

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2002 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis And Characterization Of Polymeric Anion Exchange Membranes

Download or read book Synthesis And Characterization Of Polymeric Anion Exchange Membranes written by Wenxu Zhang and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design to bear cationic groups organized via covalent linkages, which were synthesized by sequential reversible addition-fragmentation chain transfer radical polymerization (RAFT), "click" chemistry, cast/crosslinking process, and solid state quaternization. Significant enhancement in conductivities was observed and presumably attributed to the formation of ion transport channels directed by polycation chains. Excellent membrane performance were observed, including conductivities, water diffusivities, and fuel cell power densities. In Chapter 3, phosphonium containing block copolymers were synthesized and subjected to morphology characterization. Using Small Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM), it was observed that these materials form well-ordered morphologies upon solvent casting, and the ionic block preferred to form a continuous phase. By comparing the anion conductivities, the matrix in a hexagonal phase was proved to be more efficient in ion transport than lamellae. Polycyclooctene (PCOE) based triblock copolymers were synthesized in Chapter 4, by using a special chain transfer agent (CTA) to mediate Ring-Opening Metathesis Polymerization (ROMP) and reversible addition-fragmentation chain transfer radical polymerization (RAFT). The well-defined melting transition (~50 oC) of PCOE enabled the investigation of the thermal transition in hydrophobic block affecting ionic domain behavior. Then metal ion doped star block copolymers were investigated in bulk and thin film forms to demonstrate that the star block copolymer architecture can facilitate microphase separation and thus the preparation of smaller features. Using an ortho-nitrobenzyl ester junction, triblock copolymers based on PEO and PSt were synthesized and applied to hierarchical pattern fabrication in self-assembled thin films. During these studies, the single monomer insertion methodology was developed for high efficiency synthesis of (multi)functional RAFT CTAs. The molecular characterization and controlled polymerization results were documented in Chapter 7. The last chapter contains outlooks based on the research in this dissertation. Methods to improve the previously presented materials were listed. Also, fundamental questions were raised on ion transport membranes, and possible ways to answer them were provided. In addition, potential research directions are proposed.

Book Polymers for PEM Fuel Cells

Download or read book Polymers for PEM Fuel Cells written by Hongting Pu and published by John Wiley & Sons. This book was released on 2014-10-01 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including chemical, synthetic, and cross-disciplinary approaches; this book includes the necessary techniques and technologies to help readers better understand polymers for polymer electrolyte membrane (PEM) fuel cells. The methods in the book are essential to researchers and scientists in the field and will lead to further development in polymer and fuel cell technologies. • Provides complete, essential, and comprehensive overview of polymer applications for PEM fuel cells • Emphasizes state-of-the-art developments and methods, like PEMs for novel fuel cells and polymers for fuel cell catalysts • Includes detailed chapters on major topics, like PEM for direct liquid fuel cells and fluoropolymers and non-fluorinated polymers for PEM • Has relevance to a range of industries – like polymer engineering, materials, and green technology – involved with fuel cell technologies and R&D

Book Electrochemical Polymer Electrolyte Membranes

Download or read book Electrochemical Polymer Electrolyte Membranes written by Jianhua Fang and published by CRC Press. This book was released on 2017-07-26 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabrication Points out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performance Analyzes the current integration of PEMs with primary power devices and explores research trends for the next generation of PEMs Electrochemical Polymer Electrolyte Membranes provides a systematic overview of the state of the art of PEM development, making the book a beneficial resource for researchers, students, industrial professionals, and manufacturers.