EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterization of Mixed Transition Metal Oxides and Their Composites with Carbon for Energy Storage Applications

Download or read book Synthesis and Characterization of Mixed Transition Metal Oxides and Their Composites with Carbon for Energy Storage Applications written by Tarekegn Heliso Dolla and published by . This book was released on 2019 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transition Metal Oxides for Electrochemical Energy Storage

Download or read book Transition Metal Oxides for Electrochemical Energy Storage written by Jagjit Nanda and published by John Wiley & Sons. This book was released on 2022-03-28 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transition Metal Oxides for Electrochemical Energy Storage Explore this authoritative handbook on transition metal oxides for energy storage Metal oxides have become one of the most important classes of materials in energy storage and conversion. They continue to have tremendous potential for research into new materials and devices in a wide variety of fields. Transition Metal Oxides for Electrochemical Energy Storage delivers an insightful, concise, and focused exploration of the science and applications of metal oxides in intercalation-based batteries, solid electrolytes for ionic conduction, pseudocapacitive charge storage, transport and 3D architectures and interfacial phenomena and defects. The book serves as a one-stop reference for materials researchers seeking foundational and applied knowledge of the titled material classes. Transition Metal Oxides offers readers in-depth information covering electrochemistry, morphology, and both in situ and in operando characterization. It also provides novel approaches to transition metal oxide-enabled energy storage, like interface engineering and three-dimensional nanoarchitectures. Readers will also benefit from the inclusion of: A thorough introduction to the landscape and solid-state chemistry of transition metal oxides for energy storage An exploration of electrochemical energy storage mechanisms in transition metal oxides, including intercalation, pseudocapacitance, and conversion Practical discussions of the electrochemistry of transition metal oxides, including oxide/electrolyte interfaces and energy storage in aqueous electrolytes An examination of the characterization of transition metal oxides for energy storage Perfect for materials scientists, electrochemists, inorganic chemists, and applied physicists, Transition Metal Oxides for Electrochemical Energy Storage will also earn a place in the libraries of engineers in power technology and professions working in the electrotechnical industry seeking a one-stop reference on transition metal oxides for energy storage.

Book Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications

Download or read book Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications written by Wenqiao Song and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, environmental concerns and the global energy crisis have become two of our greatest challenges. The main purpose of this dissertation research is to design highly active mesoporous materials that can efficiently catalyze environmental and energy related reactions. Surface properties can be easily tuned by thermal treatment and cation doping, resulting in improved catalytic activities. Synthesis and characterization of the materials, catalytic activities for carbon monoxide oxidation, oxygen reduction and oxygen evolution reactions, and mechanistic studies are covered in this thesis. The first part describes the synthesis of mesoporous cobalt oxides through an inverse micelle route for low temperature carbon monoxide oxidation applications. The prepared material showed much better activity and stability compared with commercial cobalt oxide due to its nanoparticle nature and porous structure. The catalytic performance under both dry and moisture rich conditions were tested. Detailed characterization of the materials suggested that high surface areas and the presence of surface oxygen vacancies were critical for enhanced activities. In real systems, structured catalysts such as monolithic substrates coated with a layer of active material are used instead of powder form catalysts. To evaluate the potential of our catalysts to be used in practical catalytic devices, mesoporous metal oxides (MnOx, Co3O4, CeO2) were coated on cordierite substrate by dip coating and in-situ growth and were used as low temperature diesel oxidation catalysts. The resulting materials showed promising catalytic performance. The effect of particle size, loading amount and Cu doping on the catalytic performance are discussed in detail. In the last part, mesoporous cobalt oxides were used as bifunctional catalysts for oxygen reduction and oxygen evolution reactions. If a catalyst can catalyze both reactions, it will have great potential in the application of rechargeable metal air batteries. Ni and Mn doping were introduced into the cobalt oxide material to increase the conductivity and active site population. The Ni incorporated cobalt oxide exhibited the best activity, which can be considered as a potential substituent for precious metal catalysts (Pt, Ir, Ru). Furthermore, the intrinsic structure-property relationships of the materials were established.

Book Advances in Metal Oxides and Their Composites for Emerging Applications

Download or read book Advances in Metal Oxides and Their Composites for Emerging Applications written by Sagar D. Delekar and published by Elsevier. This book was released on 2022-08-26 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances. Introduces the fundamental properties of metal oxide-based composites, paying special attention to physicochemical, optical, electrical and structural characteristics Provides an overview of the synthetic protocols used to design and tune the properties of metal oxide-based composites for key emerging applications Discusses metal oxide-based composites and their use in energy applications such as energy storage, energy harvesting and environmental remediation

Book Metal Oxide Carbon Hybrid Materials

Download or read book Metal Oxide Carbon Hybrid Materials written by Muhammad Akram Chaudhry and published by Elsevier. This book was released on 2022-03-31 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide-carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide-carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide-carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide-carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide-carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide-Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide-carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. Reviews the fundamental properties and fabrication methods of metal-oxide-carbon composites Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors Includes current and emerging applications in environmental remediation and sensing

Book Synthesis and Characterization of Nanostructured Transition Metal Oxides for Energy Storage Devices

Download or read book Synthesis and Characterization of Nanostructured Transition Metal Oxides for Energy Storage Devices written by Jong Woung Kim and published by . This book was released on 2012 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finding a promising material and constructing a new method to have both high energy and power are key issues for future energy storage systems. This dissertation addresses three different materials systems to resolve those issues. Pseudocapacitive materials such as RuO2 and MnO2 display high capacitance but Nb2O5, displays a different charge storage mechanism, one highly dependent on its crystal phase rather than its surface area. Various sol-gel techniques were used to synthesize the different phases of Nb2O5 and electrochemical testing was used to study their charge storage with some phases displaying comparable charge storage to MnO2. To overcome the electrical limitations of using an insulating material, the core-shell structure (Nb2O5/C) was also examined and the method could be generalized to improve other pseudocapacitors. Besides electronic conductivity, the diffusion of the electrolyte ions through the shell material is a critical factor for fast charging/discharging in the core-shell structure. This dissertation also involves another topic, a reconfigurable electrode, that displays both high energy and power density. By constructing a reconfigurable electrode which has different electrical properties (metallic or insulating state) depending on the amount of intercalated `guest' ions into `host' material, it can be used as a battery or electrochemical capacitor material in the insulating or metallic state respectively. Metal oxide bronzes having metal-insulator transition were investigated in this study.

Book Metal Oxides Chalcogenides and Composites

Download or read book Metal Oxides Chalcogenides and Composites written by Aneeya Kumar Samantara and published by Springer. This book was released on 2019-08-09 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morphological characterizations, and the key parameters (Tafel plot, Turnover frequency, Faradic efficiency, overpotential, long cycle life etc.) needed to evaluate the electrocatalytic activity of the materials. Additionally, the mechanism behind the electro oxidation process is presented. Readers will find a comprehensive source on the close correlation between metal oxides, hydroxides, composites, and their properties and importance in the generation of hydrogen and oxygen from water. The depletion of fossil fuels from the earth’s crust, and related environmental issues such as climate change, demand that we search for alternative energy resources to achieve some form of sustainable future. In this regard, much scientific research has been devoted to technologies such as solar cells, wind turbines, fuel cells etc. Among them fuel cells attract much attention because of their versatility and efficiency. In fuel cells, different fuels such as hydrogen, CO2, alcohols, acids, methane, oxygen/air, etc. are used as the fuel, and catalysts are employed to produce a chemical reaction for generating electricity. Hence, it is very important to produce these fuels in an efficient, eco-friendly, and cost effective manner. The electrochemical splitting of water is an environmentally friendly process to produce hydrogen (the greener fuel used in fuel cells), but the efficiencies of these hydrogen evolution reactions (cathodic half reaction) are strongly dependent on the anodic half reaction (oxygen evolution reaction), i.e., the better the anodic half, the better will be the cathodic reaction. Further, this oxygen evolution reaction depends on the types of active electrocatalysts used. Though many more synthetic approaches have been explored and different electrocatalysts developed, oxide and hydroxide-based nanomaterials and composites (with graphene, carbon nanotubes etc.) show better performance. This may be due to the availability of more catalytic surface area and electro active centers to carry out the catalysis process.

Book Metal Oxides

    Book Details:
  • Author : J.L.G. Fierro
  • Publisher : CRC Press
  • Release : 2005-08-24
  • ISBN : 142002812X
  • Pages : 808 pages

Download or read book Metal Oxides written by J.L.G. Fierro and published by CRC Press. This book was released on 2005-08-24 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The

Book Carbon  and Inorganic based Nanostructures for Energy Applications

Download or read book Carbon and Inorganic based Nanostructures for Energy Applications written by Federico Cesano and published by Frontiers Media SA. This book was released on 2021-01-04 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanowire Energy Storage Devices

Download or read book Nanowire Energy Storage Devices written by Liqiang Mai and published by John Wiley & Sons. This book was released on 2023-11-08 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanowire Energy Storage Devices Comprehensive resource providing in-depth knowledge about nanowire-based energy storage technologies Nanowire Energy Storage Devices focuses on the energy storage applications of nanowires, covering the synthesis and principles of nanowire electrode materials and their characterization, and performance control. Major parts of the book are devoted to the applications of nanowire-based ion batteries, high energy batteries, supercapacitors, micro-nano energy storage devices, and flexible energy storage devices. The book also addresses global energy challenges by explaining how nanowires allow for the design and fabrication of devices that provide sustainable energy generation. With contributions from the founders of the field of nanowire technology, Nanowire Energy Storage Devices covers topics such as: Physical and chemical properties, thermodynamics, and kinetics of nanowires, and basic performance parameters of nanowire-based electrochemical energy storage devices Conventional, porous, hierarchical, heterogeneous, and hollow nanomaterials, and in-situ electron microscopic and spectroscopy characterization Electrochemistry, advantages, and issues of lithium-ion batteries, unique characteristic of nanowires for lithium-ion batteries, and nanowires as anodes in lithium-ion batteries Nanowires for other energy storage devices, including metal-air, polyvalent ion, alkaline, and sodium/lithium-sulfur batteries Elucidating the design, synthesis, and energy storage applications, Nanowire Energy Storage Devices is an essential resource for materials scientists, electrochemists, electrical engineers, and solid state physicists.

Book Handbook of Emerging Materials for Sustainable Energy

Download or read book Handbook of Emerging Materials for Sustainable Energy written by Naveen V. Kulkarni and published by Elsevier. This book was released on 2024-02-28 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Emerging Materials for Sustainable Energy provides a comprehensive accounting on the fundamentals, current developments, challenges and future prospects of emerging materials for the development of sustainable energy. Each chapter addresses a distinct and important area within the energy field and includes comprehensive data to support the materials being presented. Sections cover Batteries, Capacitors and Supercapacitors, Fuel cells, Thermoelectrics, Novel illumination sources and techniques, Photovoltaics & Solar cells, Alternative energy sources, hydrogen as an energy source, including hydrogen production and fuel generation, the use of Biofuels and Carbon dioxide. The book concludes with three chapters related to advanced materials under development for energy conservation and environmental protection, including theories, methodologies and simulations established for advanced materials. Covers a broad scope of advanced materials that have been developed for energy and environmental sustainability Provides detailed and updated information about the structural and functional features of various emerging materials and their multifaceted applications Includes supplementary data alongside each chapter

Book Renewable Polymers and Polymer Metal Oxide Composites

Download or read book Renewable Polymers and Polymer Metal Oxide Composites written by Sajjad Haider and published by Elsevier. This book was released on 2022-03-17 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications serves as a reference on the key concepts of the advances of polymer-oxide composites. The book reviews knowledge on polymer-composite theory, properties, structure, synthesis, and their characterization and applications. There is an emphasis on coupling metal oxides with polymers from renewable sources. Also, the latest advances in the relationship between the microstructure of the composites and the resulting improvement of the material’s properties and performance are covered. The applications addressed include desalination, tissue engineering, energy storage, hybrid energy systems, food, and agriculture. This book is suitable for early-career researchers in academia and R&D in industry who are working in the disciplines of materials science, engineering, chemistry and physics. Provides basic principles, theory and synthetic methods of composite materials, polymer composites and metal oxides Reviews the latest advances in polymer-oxide-based applications in medicine, water treatment, energy and sensing Discusses materials from renewable resources, including lifecycle assessment, economic aspects and potential application in tissue engineering, photovoltaics and food packaging

Book Metal Oxides in Heterogeneous Catalysis

Download or read book Metal Oxides in Heterogeneous Catalysis written by Jacques C. Vedrine and published by Elsevier. This book was released on 2018-01-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. Presents case studies in each chapter that provide a focus on the industrial applications Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications

Book Electrospinning for Advanced Energy Storage Applications

Download or read book Electrospinning for Advanced Energy Storage Applications written by Neethu T. M. Balakrishnan and published by Springer Nature. This book was released on 2021-02-15 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a consolidated description of the process of electro-spinning and detailed properties and applications of electro-spun electrodes and electrolytes in energy storage devices. It discusses the preparation, structure and electrochemical properties of nanofiber electrode and electrolyte materials. It focuses exclusively on Lithium Ion batteries, with the contents discussing different aspects of electrospinning in storage systems. This book aims to provide a comprehensive resource to help researchers choose the best electrodes and electrolyte materials based on the properties required for their desired commercial applications. It will be a useful guide to graduate students and researchers working in solid-state chemistry, physics, materials chemistry, and chemical engineering on aspects of energy storage.

Book Synthesis and Characterization of Transition Metal Oxides and Dichalcogenides and Their Application in Organic Photovoltaics

Download or read book Synthesis and Characterization of Transition Metal Oxides and Dichalcogenides and Their Application in Organic Photovoltaics written by Diego Barrera Mendez and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthetic and Dynamic Control in Strongly Correlated Transition Metal Oxides

Download or read book Synthetic and Dynamic Control in Strongly Correlated Transition Metal Oxides written by Samuel David Marks (Ph.D.) and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Binary and mixed oxides incorporating transition metal cations host a broad range of scientifically compelling and technologically significant optical, electronic, and magnetic properties. Transition metal oxides (TMOs) are being explored for applications in energy storage, optoelectronics, sensors, and magnetic storage among many other potential uses. The diverse range of physical properties within this class of materials arises from the large flexibility in chemical compositions and crystal structures. These compositions and structures can be generated during synthesis or tailored after synthesis with external stimuli. In this thesis, I develop strategies for reaching structural and chemical states in transition metal oxides with technologically important optical and electronic properties. I demonstrate a new synthesis strategy for single-crystal SrVO3 films - a transparent conducting oxide with potential applications in display and photovoltaic technologies - using solid-phase epitaxy. By this technique, epitaxial layers of SrVO3 are crystallized from amorphous precursor films. The electrical conductivity and visible light transmission in these epilayers are comparable with SrVO3 formed through other epitaxial synthesis methods. This synthesis route employs thin film deposition and crystallization techniques that are scalable to m2 surface areas. Scalability is a crucial step for commercial applications of transparent conducting oxide layers. Crystal growth from amorphous precursor films is a recent development for transition metal oxides that have traditionally been synthesized using vapor-phase epitaxy. As a result, fundamental insight into the amorphous-to-crystalline transformation and defect formation processes in solid-phase epitaxy for transition metal oxides is comparatively rare. In situ synchrotron x-ray characterization is a powerful experimental approach for gathering mechanistic insight for crystal growth processes. I have designed new instrumentation for synchrotron x-ray studies of the amorphous layer deposition, crystallization, and defect formation processes inherent to solid-phase epitaxy. This instrumentation combines a vacuum sample deposition and crystallization environment with x-ray focusing optics for in situ x-ray microbeam diffraction, reflectivity, and scattering studies. Design features and key capabilities are demonstrated through a series of results from experiments performed during the commissioning of the instrument at the Advanced Photon Source. In a separate ex-situ study, I examine the crystal structure of micrometer-scale regions of SrTiO3 crystallized from nanoscale seeds using lateral solid-phase crystallization. Using a high-energy synchrotron x-ray beam focused to 200 nm, I reveal a continuous rotation in the lattice planes in the laterally crystallized regions. A rotation of nearly 25[degrees] per micrometer of lateral crystallization is measured for several SrTiO3 crystals independent of the crystallographic orientation of the growth front. The uniform lattice rotation rate suggests a single defect formation process that is characteristic of lateral crystal growth through an amorphous precursor layer. These findings support a hypothesis that the lattice rotation is driven by dislocations that form in response to mechanical stresses arising from the density difference across the crystal-amorphous interface. Controlling the oxygen environment is crucial to forming specific structural phases during synthesis. Similarly, modifications to oxygen stoichiometry can be used to modify the physical properties in epitaxial thin films of multivalent transition metal oxides. In this project, I use x-ray nanobeam diffraction and scanning near-field optical microscopy to simultaneously probe the structural and optoelectronic features of oxygen-deficient epitaxial monoclinic vanadium dioxide thin-films. In this study, an electrically conductive phase is patterned in insulating vanadium dioxide using intense electric fields delivered from an atomic force microscope probe. Electrical conductivity arises from oxygen vacancies created in the presence of the electric field that modify the electronic band structure. The stability and relaxation of the electrically conducting state are governed by the oxygen vacancy dynamics that can be manipulated with hard x-ray irradiation. This study demonstrates a way to manipulate nanoscale structural and electronic states in vanadium dioxide with local electric fields and focused hard x-rays, bringing new insights into the stability of the oxygen-deficient conductive phase of vanadium dioxide.

Book Metal and Metal Oxides for Energy and Electronics

Download or read book Metal and Metal Oxides for Energy and Electronics written by Saravanan Rajendran and published by Springer Nature. This book was released on 2020-10-05 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy is a key world issue in the context of climate change and increasing population, 'calling for alternative fuels, better energy storage, and energy-saving devices. This books reviews the principles and applications of metals and metal oxides for energy, with focus on batteries, electrodes, nanomaterials, electronics, supercapacitors, biofuels and sensors.