EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterization of Alkylamine Functionalized Metal Organic Frameworks as Adsorbents for Carbon Dioxide

Download or read book Synthesis and Characterization of Alkylamine Functionalized Metal Organic Frameworks as Adsorbents for Carbon Dioxide written by Thomas Michael McDonald and published by . This book was released on 2015 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work herein describes an investigation of metal-organic frameworks as adsorbents for selectively removing carbon dioxide (CO2) from low-pressure gas mixtures. Metal-organic frameworks are permanently porous, crystalline solid phase materials composed of organic molecules connected together by metal-based nodes into ordered structures. Generally exhibiting very high gravimetric surface areas, the pore surfaces of metal-organic frameworks can be rationally designed to allow for highly specific interactions between the adsorbent and guest species. Through chemical modifications of the pore surfaces, metal-organic frameworks were designed to adsorb CO2 over other small molecules. Chapter 1 begins with background information on carbon capture and sequestration (CCS) and the role it can potentially play in slowing anthropogenic CO2 emissions. An analysis of desirable metal-organic frameworks properties is presented along with a summary of the most significant work in the field of developing new metal-organic frameworks as CO2 adsorbents. Finally, a summary of amine-functionalized solid adsorbents that have directly influenced the synthesis and characterization methods reported in this investigation is presented. Chapter 2 reports the synthesis and characterization of the metal-organic framework mmen-CuBTTri. At the time it was first synthesized, mmen-CuBTTri exhibited some of the best CO2 adsorption properties of any metal-organic framework, including the highest selectivity for CO2 over N2 yet measured. The sorbent was the first to demonstrate that aliphatic amines could significantly improve the CO2 adsorption properties of metal-organic frameworks with open metal sites. Furthermore, despite an enthalpy of CO2 adsorption of nearly -100 kJ/mol at zero coverage, it was shown that the sorbent could be effectively cycled with modest temperature swings. Chapter 3 reports the original synthesis and characterization of mmen-Mg2(dobpdc). Utilizing the same diamine as the sorbent in Chapter 2, it was demonstrated that the nature of metal-organic framework support, and not just the amine functional groups, affects the CO2 adsorption properties. In this case, the high density of amines within the pores resulted in a material that could effectively remove CO2 at very low concentrations; it was the first metal-organic framework studied for its ability to remove CO2 directly from air. Furthermore, mmen-Mg2(dobpdc) was the first amine-functionalized solid sorbent to exhibit steps in its pure component CO2 isotherm. Finally, it was shown that the adsorption properties of the material, especially the regeneration energy, make it competitive with aqueous amine solutions. Chapter 4 builds upon the work of Chapter 3. The adsorption mechanism of mmen-Mg2(dobpdc), which was studied by infrared spectroscopy, solid state NMR spectroscopy, and in situ powder X-ray diffraction measurements was revealed to be a previously unprecedented cooperative insertion mechanism. The origin of the unusual isotherm steps was revealed to be a phase transition of the amines attached to the pore surface. In Chapter 4, a method of controlling the position of isotherm steps is described. Finally, the superior carbon capture characteristics of phase change adsorbents are enumerated. Chapter 5 is a departure from the previous chapters and describes a simple and convenient method of utilizing a commercially available thermogravimetric analyzer to assess the porosity and activation conditions of metal-organic frameworks. The importance of identifying proper activation is discussed and a suggested protocol for researchers to use is given. Lastly, the ability of the method to improve the reported gas adsorption properties of the metal-organic framework Mn-BTT is reported.

Book Carbon Capture by Metal Organic Framework Materials

Download or read book Carbon Capture by Metal Organic Framework Materials written by David J. Fisher and published by Materials Research Forum LLC. This book was released on 2020-07-05 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Framework Materials (MOFs) are well suited for absorbing carbon dioxide. MOFs can form highly-porous structures with great adsorption capacities. They also offer good catalytic properties and much research refers to the relationship between catalytic performance and framework structure. In addition to simple CO2 absorption, there are other interesting applications, such as the direct electrochemical reduction into useful chemicals and fuels, the conversion of CO2 into methanol, the electrochemical reduction of CO2, or electrocatalytic hydrogen evolution (thus boosting the ‘hydrogen economy’). The book references 295 original resources and includes their direct web link for in-depth reading. Keywords: Global Warming, Carbon Dioxide Capture, Metal-Organic Frameworks MOFs, Adsorbents for CO2, Porous Solids, Catalytic Performance, Synthesis of MOFs, Conversion of CO2 into Methanol, Electrocatalytic Hydrogen Evolution, Hydrogen Economy, Gas Adsorption, Gas Separation, Organic Ligands, Metal Ion Clusters.

Book Membrane Contactor Technology

Download or read book Membrane Contactor Technology written by Mohammad Younas and published by John Wiley & Sons. This book was released on 2022-04-18 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: An eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.

Book Metal Organic Framework Materials

Download or read book Metal Organic Framework Materials written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2014-09-19 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc

Book Metal Organic Frameworks  MOFs  as Catalysts

Download or read book Metal Organic Frameworks MOFs as Catalysts written by Shikha Gulati and published by Springer Nature. This book was released on 2022-02-18 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the state-of-the-art research and discovery in the use of MOFs in catalysis, highlighting the scope to which these novel materials have been incorporated by the community. It provides an exceptional insight into the strategies for the synthesis and functionalization of MOFs, their use as CO2 and chemical warfare agents capture, their role in bio-catalysis and applications in photocatalysis, asymmetric catalysis, nano-catalysis, etc. This book will also emphasize the challenges with previous signs of progress and way for further research, details relating to the current pioneering technology, and future perspectives with a multidisciplinary approach. Furthermore, it presents up-to-date information on the economics, toxicity, and regulations related to these novel materials.

Book Advanced Materials for Sustainable Environmental Remediation

Download or read book Advanced Materials for Sustainable Environmental Remediation written by Dimitrios A Giannakoudakis and published by Elsevier. This book was released on 2022-04-21 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in waters, the air and soil. It provides fundamental knowledge on available materials and treatment processes, as well as applications, including adsorptive remediation and catalytic remediation. Organized clearly by type of material, this book presents a consistent structure for each chapter, including characteristics of the materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias, and future perspectives. This book offers an interdisciplinary and practical examination of available materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike. Highlights a wide range of synthetic methodologies, physicochemical and engineered features of novel materials and composites/hybrids for environmental purposes Provides comprehensive, consolidated coverage of advanced materials for environmental remediation applications for researchers in environmental science, materials science, and industry to identify in-depth solutions to pollution Presents up-to-date details of advanced materials, including descriptions and characteristics that impact their applications in environmental remediation processes

Book Metal Organic Frameworks

    Book Details:
  • Author : Hermenegildo García
  • Publisher : John Wiley & Sons
  • Release : 2018-07-16
  • ISBN : 352734313X
  • Pages : 530 pages

Download or read book Metal Organic Frameworks written by Hermenegildo García and published by John Wiley & Sons. This book was released on 2018-07-16 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on applications in separation, adsorption and catalysis, this handbook underlines the importance of this hot and exciting topic. It provides an excellent insight into the synthesis and modification of MOFs, their synthesis on an industrial scale, their use as CO2 and chemical warfare adsorbers, and the role of defects in catalysis. In addition, the authors treat such new aspects as biocatalysis and applications in photocatalysis and optoelectronic devices.

Book Metal Organic Frameworks for Carbon Capture and Energy

Download or read book Metal Organic Frameworks for Carbon Capture and Energy written by Pooja Ghosh and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Simulation of Liquids

Download or read book Computer Simulation of Liquids written by M. P. Allen and published by Oxford University Press. This book was released on 1989 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.

Book Metal Organic Frameworks

    Book Details:
  • Author : Leonard R. MacGillivray
  • Publisher : John Wiley & Sons
  • Release : 2010-12-17
  • ISBN : 111803516X
  • Pages : 440 pages

Download or read book Metal Organic Frameworks written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2010-12-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-organic frameworks represent a new class of materials that may solve the hydrogen storage problem associated with hydrogen-fueled vehicles. In this first definitive guide to metal-organic framework chemistry, author L. MacGillivray addresses state-of-art developments in this promising technology for alternative fuels. Providing professors, graduate and undergraduate students, structural chemists, physical chemists, and chemical engineers with a historical perspective, as well as the most up-to-date developments by leading experts, Metal-Organic Frameworks examines structure, symmetry, supramolecular chemistry, surface engineering, metal-organometallic frameworks, properties, and reactions.

Book Synthesis of Amine modified Aerogel Sorbents and Metal organic Framework 5  MOF 5  Membranes for Carbon Dioxide Separation

Download or read book Synthesis of Amine modified Aerogel Sorbents and Metal organic Framework 5 MOF 5 Membranes for Carbon Dioxide Separation written by Teresa M. Rosa and published by . This book was released on 2010 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A series of solid sorbents were synthesized by functionalizing amines on the surface of silica aerogels. This was done by three coating methods: physical adsorption, magnetically assisted impact coating (MAIC) and atomic layer deposition (ALD). CO2 adsorption capacity of the sorbents was measured at room temperature in a Cahn microbalance. The sorbents synthesized by physical adsorption show the largest CO2 adsorption capacity (1.43-1.63 mmol CO2/g). An additional sorbent synthesized by ALD on hydrophilic aerogels at atmospheric pressures shows an adsorption capacity of 1.23 mmol CO2/g. Studies on one amine-modified sorbent show that the powder is of agglomerate bubbling fluidization (ABF) type. The powder is difficult to fluidize and has limited bed expansion. The ultimate goal is to configure the amine-modified sorbents in a micro-jet assisted gas fluidized bed to conduct adsorption studies. MOF-5 membranes were synthesized on α-alumina supports by two methods: in situ synthesis and secondary growth synthesis. Characterization by scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) show that the membranes prepared by both methods have a thickness of 14-16 μm, and a MOF-5 crystal size of 15-25 μm with no apparent orientation. Single gas permeation results indicate that the gas transport through both membranes is determined by a combination of Knudsen diffusion and viscous flow. The contribution of viscous flow indicates that the membranes have defects.

Book Hybrid Organic Inorganic Interfaces

Download or read book Hybrid Organic Inorganic Interfaces written by Marie Helene Delville and published by John Wiley & Sons. This book was released on 2018-04-09 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: Das erste Handbuch und gut zugängliche Referenzwerk zu diesem zunehmend wichtigen Thema erläutert in einem anwendungsorientierten Ansatz Synthese, Design, Charakterisierung und Simulation von Grenzflächen bei hybriden organisch-anorganischen Materialien.

Book Advanced Materials for a Sustainable Environment

Download or read book Advanced Materials for a Sustainable Environment written by Naveen Kumar and published by CRC Press. This book was released on 2022-12-30 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes recent and critical aspects of advanced materials for environmental protection and remediation. It explores the various development aspects related to environmental remediation, including design and development of novel and highly efficient materials, aimed at environmental sustainability. Synthesis of advanced materials with desirable physicochemical properties and applications is covered as well. Distributed across 13 chapters, the major topics covered include sensing and elimination of contaminants and hazardous materials via advanced materials along with hydrogen energy, biofuels, and CO2 capture technology. Discusses the development in design of synthesis process and materials with sustainable approach. Covers removal of biotic and abiotic wastes from the aqueous systems. Includes hydrogen energy and biofuels under green energy production. Explores removal of environmental (soil and air) contaminants with nanomaterials. Reviews advanced materials for environmental remediation in both liquid and gas phases.

Book Porous Polymer Networks

    Book Details:
  • Author : Vikas Mittal
  • Publisher :
  • Release : 2019-01-31
  • ISBN : 9781925823240
  • Pages : 328 pages

Download or read book Porous Polymer Networks written by Vikas Mittal and published by . This book was released on 2019-01-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of the book is to assimilate the fundamental know how about the synthesis, properties as well as applications of a large range of recently developed and commercially viable porous polymer networks.

Book Mixed Matrix Membranes

Download or read book Mixed Matrix Membranes written by Clara Casado-Coterillo and published by MDPI. This book was released on 2019-12-16 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed matrix membranes (MMMs) have attracted a large amount of interest in research laboratories worldwide in recent decades, motivated by the gap between a growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications to solve environmental and health challenges of the society of 21st century.

Book Materials for Carbon Capture

Download or read book Materials for Carbon Capture written by De-en Jiang and published by John Wiley & Sons. This book was released on 2020-02-25 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Book Characterisation of Metal organic Frameworks with Inherent Functionalisation for Carbon Capture Methods

Download or read book Characterisation of Metal organic Frameworks with Inherent Functionalisation for Carbon Capture Methods written by Craig Alan McAnally and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Capture offers potential remediation for greenhouse gases from industrial point sources, and physical sorbents are an economically viable option, but one that requires optimisation. Here, materials were investigated to assess the effect of incorporation of functionalised ligands, which utilise a Lewis basic character, on the potential of such materials for Carbon Capture applications. Materials were investigated for their structural and adsorptive properties, allowing analysis and evaluation of the selective capture of carbon dioxide. Characterisation included single crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Adsorption properties were evaluated using volumetric nitrogen adsorption at 77 K, which showed all three materials experienced activated diffusion, and gravimetric carbon dioxide adsorption at 273 K. Further gravimetric adsorption analysis was performed at various temperatures using carbon dioxide, methane, and nitrogen gases, to analyse the performance of these materials under simulated conditions for carbon capture processes. Thermodynamic and kinetic properties were determined in order to provide an indication of the underlying processes governing diffusion and equilibration of adsorption.Three materials were investigated; Cu(bpetha)2SiF6 (bpetha = 1,2-bis(4-pyridyl)ethane), [Cu(TPT)]BF4.0.75H2O and [Cu(TPT)]NO3.MeOH (TPT = 1,3,5-tris(4-pyridyl)-2,4,6-triazine). Cu(bpetha)2SiF6 showed promising results for carbon dioxide adsorption (0.6 mmol g−1 at 100 kPa and 333 K), having kinetically selective behaviour for nitrogen and methane at timescales that are suitable for pressure swing adsorption processing (90 %/5 % of equilibrium uptake for carbon dioxide vs. nitrogen in under 3 min). The material also showed enhanced adsorption interactions towards carbonvdioxide as a consequence of electronegative fluorine atoms within the structure, and also exhibited flexibility of the framework towards carbon dioxide. [Cu(TPT)]BF4.0.75H2O showed poor adsorption capabilities for carbon dioxide (0.15 mmol g−1 at 100kPa and 333 K), which is ascribed to pore blocking effects of the anion within the structure. [Cu(TPT)]NO3.MeOH showed moderate uptakes for CO2 at low temperatures (1.96 mmol g−1 maximum capacity at 273 K), but demonstrated better adsorption capabilities for methane at higher temperatures (1.54 mmol g−1 at 100 kPa and 333 K). The framework experienced a large structural change upon adsorption, which was probed using methane at different temperatures.The results of this study showed that materials synthesised with inherent functionalisation could be developed to enhance carbon dioxide adsorption for Carbon Capture applications. However, other structural effects of the materials must be considered as the complexity of Metal-Organic Framework structures can influence the adsorption properties via a variety of mechanisms.