Download or read book Synaptic Plasticity for Neuromorphic Systems written by Christian Mayr and published by Frontiers Media SA. This book was released on 2016-06-26 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.
Download or read book Translational Research in Traumatic Brain Injury written by Daniel Laskowitz and published by CRC Press. This book was released on 2016-04-21 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Download or read book Neuromorphic Devices for Brain inspired Computing written by Qing Wan and published by John Wiley & Sons. This book was released on 2022-05-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.
Download or read book Spiking Neuron Models written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2002-08-15 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.
Download or read book Atomic Switch written by Masakazu Aono and published by Springer Nature. This book was released on 2020-03-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the inventors and leading experts of this new field, the book results from the International Symposium on “Atomic Switch: Invention, Practical use and Future Prospects” which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (~1/10) with much lower power consumption (~1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (~1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.
Download or read book Memristor and Memristive Neural Networks written by Alex James and published by BoD – Books on Demand. This book was released on 2018-04-04 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there are several designs of this discussed in this book, such as in metal oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of resistive random access memory and graphene oxide-based memristor. The modelling of the memristors is required to ensure that the devices can be put to use and improve emerging application. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic. The applications of the memristor models in various neuromorphic networks are discussed covering various neural network models, implementations in A/D converter and hierarchical temporal memories.
Download or read book Biohybrid Systems written by Ranu Jung and published by John Wiley & Sons. This book was released on 2011-11-30 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discipline of neurodesign is a highly interdisciplinary one, while at the same time in the process of maturing towards real-life applications. The breakthrough about to be achieved is to close the loop in communication between neural systems and electronic and mechatronic systems and actually let the nervous system adapt to the feedback from the man-made systems. To master this loop, scientists need a sound understanding of neurology, from the cellular to the systems scale, of man-made systems and how to connect the two. These scientists comprise medical scientists, neurologists and physiologists, engineers, as well as biophysicists. And they need the topics in a coherently written work with chapters building upon another.
Download or read book Neuromorphic Systems written by Leslie S. Smith and published by World Scientific. This book was released on 1998 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic systems are implementations in silicon of sensory and neural systems whose architecture and design are based on neurobiology. This growing area proffers exciting possibilities, such as sensory systems that can compete with human senses and pattern recognition systems that can run in real time. The area is at the intersection of neurophysiology, computer science and electrical engineering. This book brings together recent developments in Europe and the US, so that researchers in both academia and industry can find out about the state of the art. As well as elementary material on what neuromorphic systems are and why they are growing in importance, the book contains details of current work. Them are articles on aspects of implementing sensory neuromorphic systems, as well as articles on neuromorphic hardware.
Download or read book Emerging Nanoelectronic Devices written by An Chen and published by John Wiley & Sons. This book was released on 2015-01-27 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.
Download or read book Enabling Technologies for Very Large Scale Synaptic Electronics written by Themis Prodromakis and published by Frontiers Media SA. This book was released on 2018-07-05 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important part of the colossal effort associated with the understanding of the brain involves using electronics hardware technology in order to reproduce biological behavior in ‘silico’. The idea revolves around leveraging decades of experience in the electronics industry as well as new biological findings that are employed towards reproducing key behaviors of fundamental elements of the brain (notably neurons and synapses) at far greater speed-scale products than any software-only implementation can achieve for the given level of modelling detail. So far, the field of neuromorphic engineering has proven itself as a major source of innovation towards the ‘silicon brain’ goal, with the methods employed by its community largely focused on circuit design (analogue, digital and mixed signal) and standard, commercial, Complementary Metal-Oxide Silicon (CMOS) technology as the preferred `tools of choice’ when trying to simulate or emulate biological behavior. However, alongside the circuit-oriented sector of the community there exists another community developing new electronic technologies with the express aim of creating advanced devices, beyond the capabilities of CMOS, that can intrinsically simulate neuron- or synapse-like behavior. A notable example concerns nanoelectronic devices responding to well-defined input signals by suitably changing their internal state (‘weight’), thereby exhibiting `synapse-like’ plasticity. This is in stark contrast to circuit-oriented approaches where the `synaptic weight’ variable has to be first stored, typically as charge on a capacitor or digitally, and then appropriately changed via complicated circuitry. The shift of very much complexity from circuitry to devices could potentially be a major enabling factor for very-large scale `synaptic electronics’, particularly if the new devices can be operated at much lower power budgets than their corresponding 'traditional' circuit replacements. To bring this promise to fruition, synergy between the well-established practices of the circuit-oriented approach and the vastness of possibilities opened by the advent of novel nanoelectronic devices with rich internal dynamics is absolutely essential and will create the opportunity for radical innovation in both fields. The result of such synergy can be of potentially staggering impact to the progress of our efforts to both simulate the brain and ultimately understand it. In this Research Topic, we wish to provide an overview of what constitutes state-of-the-art in terms of enabling technologies for very large scale synaptic electronics, with particular stress on innovative nanoelectronic devices and circuit/system design techniques that can facilitate the development of very large scale brain-inspired electronic systems
Download or read book Preparation and Properties of 2D Materials written by Byungjin Cho and published by MDPI. This book was released on 2020-12-10 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
Download or read book Nature Inspired Robotics written by Jagjit Singh Dhatterwal and published by CRC Press. This book was released on 2024-07-24 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the theories and methods of Nature-Inspired Robotics in artificial intelligence. Software and hardware technologies, alongside theories and methods, illustrate the application of bio-inspired artificial intelligence. It includes discussions on topics such as Robot Control Manipulators, Geometric Transformation, Robotic Drive Systems and Nature Inspired Robotic Neural System. Elaborating upon recent progress made in five distinct configurations of nature-inspired computing, it explores the potential applications of this technology in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. · Discusses advances in cutting-edge technology in brain-inspired computing, perception technologies and aspects of neuromorphic electronics · Offers a thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms · Provides comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviours · Includes cognitive behaviour of Inspired Robotics and cognitive technologies with applications in Artificial Intelligence · Contains practical discussions of neuromorphic devices based on chalcogenide and organic materials. This text acts as a reference book for students, scholars, and industry professionals.
Download or read book Perovskite Optoelectronic Devices written by Basudev Pradhan and published by Springer Nature. This book was released on with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Artificial Neural Networks as Models of Neural Information Processing written by Marcel van Gerven and published by Frontiers Media SA. This book was released on 2018-02-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.
Download or read book Event Based Neuromorphic Systems written by Shih-Chii Liu and published by John Wiley & Sons. This book was released on 2015-02-16 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.
Download or read book Beyond Silicon Advancements and Trends in Modern Computer Technology written by Dr. R. Sarankumar and published by Inkbound Publishers. This book was released on 2023-02-07 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the latest trends and advancements in computer technology beyond traditional silicon-based systems. This book highlights innovations in hardware and computing paradigms, providing a glimpse into the future of technology and its potential to reshape industries.
Download or read book Computer History written by Vijay Kumar Yadav and published by Vijay Kumar Yadav . This book was released on with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: **Computer History** is an insightful exploration of the evolution of computing, from ancient counting devices to modern technological marvels. This comprehensive guide delves into the pivotal moments and key figures that shaped the world of computing. Discover the origins of mechanical computation with the abacus and the Antikythera Mechanism, and follow the transformative innovations of pioneers like Charles Babbage, Ada Lovelace, and Alan Turing. The book also examines the rise of electronic computers, the personal computer revolution, and the development of groundbreaking software and operating systems. Additionally, it highlights the impact of the internet, modern computing trends, and the future directions in quantum and neuromorphic computing. Addressing ethical and societal implications, this book offers a complete historical overview for enthusiasts, students, and professionals alike, providing a deeper understanding of the technology that underpins our digital age.