Download or read book Switching Power Supply Design and Optimization Second Edition written by Sanjaya Maniktala and published by McGraw Hill Professional. This book was released on 2013-10-30 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest techniques for designing state-of-the-art power supplies, including resonant (LLC) converters Extensively revised throughout, Switching Power Supply Design & Optimization, Second Edition, explains how to design reliable, high-performance switching power supplies for today's cutting-edge electronics. The book covers modern topologies and converters and features new information on designing or selecting bandgap references, transformer design using detailed new design charts for proximity effects, Buck efficiency loss teardown diagrams, active reset techniques, topology morphology, and a meticulous AC-DC front-end design procedure. This updated resource contains design charts and numerical examples for comprehensive feedback loop design, including TL431, plus the world’s first top-down simplified design methodology for wide-input resonant (LLC) converters. A step-by-step comparative design procedure for Forward and Flyback converters is also included in this practical guide. The new edition covers: Voltage references DC-DC converters: topologies to configurations Contemporary converters, composites, and related techniques Discontinuous conduction mode Comprehensive front-end design in AC-DC power conversion Topologies for AC-DC applications Tapped-inductor (autotransformer-based) converters Selecting inductors for DC-DC converters Flyback and Forward converter transformer design Forward and Flyback converters: step-by-step design and comparison PCBs and thermal management Closing the loop: feedback and stability, including TL431 Practical EMI filter design Reset techniques in Flyback and Forward converters Reliability, testing, and safety issues Unraveling and optimizing Buck converter efficiency Introduction to soft-switching and detailed LLC converter design methodology with PSpice simulations Practical circuits, design ideas, and component FAQs
Download or read book Switching Power Supplies A Z written by Sanjaya Maniktala and published by Elsevier. This book was released on 2012-04-04 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1: The Principles of Switching Power Conversion Chapter 2: DC-DC Converter Design and Magnetics Chapter 3: Off-line Converter Design and Magnetics Chapter 4: The Topology FAQ Chapter 5: Optimal Core Selection Chapter 6: Component Ratings, Stresses, Reliability and Life Chapter 7: Optimal Power Components Selection Chapter 8: Conduction and Switching Losses Chapter 9: Discovering New Topologies Chapter 10: Printed Circuit Board Layout Chapter 11: Thermal Management Chapter 12: Feedback Loop Analysis and Stability Chapter 13: Paralleling, Interleaving and Sharing Chapter 14: The Front-End of AC-DC Power Supplies Chapter 15: DM and CM Noise in Switching Power Supplies Chapter 16: Fixing EMI across the Board Chapter 17: Input Capacitor and Stability Chapter 18: The Math behind the Electromagnetic Puzzle Chapter 19: Solved Examples Appendix A.
Download or read book Switching Power Supply Design 3rd Ed written by Abraham Pressman and published by Mcgraw-hill. This book was released on 2009-03-26 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment
Download or read book Switching Power Supply Design Optimization written by Sanjaya Maniktala and published by McGraw Hill Professional. This book was released on 2005 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a rigorous, carefully explained and motivated “beginner’s bible” to power supply design. Between dense, mathematical textbooks on power electronics and tiny power supply “cookbooks” there exists no practical tutorial on the hazards of contemporary power supply design. Our Pressman book, the 800 lb gorilla in the field, is both mathematically dense and 7 years old. This new book, detailing cutting edge thermal management techniques, grouping key design equations in a special reference section, and containing a concise Design FAQ, will serve both as an invaluable tutorial and quick reference.
Download or read book Troubleshooting Switching Power Converters written by Sanjaya Maniktala and published by Elsevier. This book was released on 2011-04-08 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Supply design is all about detail. And a large part of that detail lies in the practical domain, largely because of the typically small number of microseconds of switching periods involved, and the even smaller tens of nanoseconds of switch transition times --- all these, in effect accentuating various "second-order" effects, that eventually end up playing prime havoc with "normal" expectations of how the circuit should behave. So not unsurprisingly, even after reading several books, most readers still find themselves no closer to the ultimate goal of designing an actual power supply. Sooner or later, all engineers start realizing the hard fact that designing a switching power supply isn't the trivial task it once seemed to be. But even after years of successfully mastering the underlying theory, the ultimate goal of creating a cost-effective, reliable and commercially viable power supply may still remain a distant dream, since success ultimately hinges on experience. That is, in fact, what clearly differentiates a senior and seasoned power supply engineer from the others --- the ability to navigate and surmount a veritable minefield of tricky issues that can only be learned the hard way, by actual hands-on experience on the job. This book presents practical knowledge the author acquired rather painfully, while working "in the trenches" for several years in major engineering companies scattered across several continents. This is intended to be the mythical senior engineer's "bag of tricks," finally made available in the form of an easy-to-read book on your shelf. This book will make life for the ambitious power supply engineer much simpler --- besides reducing significantly, the rigorous requirement of having to be a senior engineer's protégé for years on end, just to gain a small measure of real success in this field.* A practical presentation that answers the important question: why is my switching converter behaving so differently than what I was expecting on the basis of my paper design? And how do I bridge that huge gap?* For the first time, a systematic and thorough discussion of troubleshooting switching power supplies.* Coverage of AC/DC and DC/DC power supplies. * Bench Evaluation of semiconductor ICs used in power conversion --- describing standard and unusual techniques mastered by the author, while testing similar chips at National Semiconductor. * Detailed coverage of vital topics that haven't been covered by available sources --- grounding systems, the subtleties of component datasheets, and using instruments and probes effectively.* Systematic investigation (type of failure mechanism, topology, etc.) and solutions for 5 years of reported power supply issues on a prominent, public web forum. This approach will ensure that engineers will not repeat the same mistakes. * A unique, readable style: personal and direct; no mystification--- just the plain truth, easily and logically explained, with plenty of pictures, graphs and plots.
Download or read book Optimal Design of Switching Power Supply written by Zhanyou Sha and published by John Wiley & Sons. This book was released on 2015-06-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A contemporary evaluation of switching power design methods with real world applications • Written by a leading author renowned in his field • Focuses on switching power supply design, manufacture and debugging • Switching power supplies have relevance for contemporary applications including mobile phone chargers, laptops and PCs • Based on the authors' successful "Switching Power Optimized Design 2nd Edition" (in Chinese) • Highly illustrated with design examples of real world applications
Download or read book High Frequency Magnetic Components written by Marian K. Kazimierczuk and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Download or read book Power Supply Cookbook written by Marty Brown and published by Elsevier. This book was released on 2001-06-13 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Supply Cookbook, Second Edition provides an easy-to-follow, step-by-step design framework for a wide variety of power supplies. With this book, anyone with a basic knowledge of electronics can create a very complicated power supply design in less than one day. With the common industry design approaches presented in each section, this unique book allows the reader to design linear, switching, and quasi-resonant switching power supplies in an organized fashion. Formerly complicated design topics such as magnetics, feedback loop compensation design, and EMI/RFI control are all described in simple language and design steps. This book also details easy-to-modify design examples that provide the reader with a design template useful for creating a variety of power supplies. This newly revised edition is a practical, "start-to-finish" design reference. It is organized to allow both seasoned and inexperienced engineers to quickly find and apply the information they need. Features of the new edition include updated information on the design of the output stages, selecting the controller IC, and other functions associated with power supplies, such as: switching power supply control, synchronization of the power supply to an external source, input low voltage inhibitors, loss of power signals, output voltage shut-down, major current loops, and paralleling filter capacitors. It also offers coverage of waveshaping techniques, major loss reduction techniques, snubbers, and quasi-resonant converters. - Guides engineers through a step-by-step design framework for a wide variety of power supplies, many of which can be designed in less than one day - Provides easy-to-understand information about often complicated topics, making power supply design a much more accessible and enjoyable process
Download or read book Closing the Power Gap between ASIC Custom written by David Chinnery and published by Springer Science & Business Media. This book was released on 2008-01-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains how to use low power design in an automated design flow, and examine the design time and performance trade-offs Includes the latest tools and techniques for low power design applied in an ASIC design flow Focuses on low power in an automated design methodology, a much neglected area
Download or read book Switchmode Power Supply Handbook written by Keith Billings and published by McGraw-Hill Professional. This book was released on 1999 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unarguably the leading hands-on guide in this rapidly expanding area of electronics, Keith Billings' new revision of his Switchmode Power Supply Handbook brings state-of-the-art techniques and developments to engineers at all levels. Offering sound working knowledge of the latest in topologies and clear, step-by-step approaches to component decisions, this Handbook gives power supply designers practical, solutions-oriented design guidance free of unnecessarily complicated mathematical derivations and theory. This thoroughly updated Handbook features many new fully worked examples, as well as numerous nomograms--everything you need to design today's smaller, faster, and cooler systems. Turn to just about any page, and you'll find cutting-edge design expertise on electronic ballast, power factor correction, new thermal management techniques, transformers, chokes, input filters, EMI control, converters, snubber circuits, auxiliary systems, and much more. The most comprehensive book on power supply design available anywhere, Switchmode Power Supply Handbook is the industry standard, now fully updated for the 21st century.
Download or read book Sliding Mode Control of Switching Power Converters written by Siew-Chong Tan and published by CRC Press. This book was released on 2018-09-03 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers. Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode control (SMC) has been most widely investigated and proved to be a more feasible alternative than fuzzy and adaptive control for existing and future power converters. Bridging the gap between power electronics and control theory, this book employs a top-down instructional approach to discuss traditional and modern SMC techniques. Covering everything from equations to analog implantation, it: Provides a comprehensive general overview of SMC principles and methods Offers advanced readers a systematic exposition of the mathematical machineries and design principles relevant to construction of SMC, then introduces newer approaches Demonstrates the practical implementation and supporting design rules of SMC, based on analog circuits Promotes an appreciation of general nonlinear control by presenting it from a practical perspective and using familiar engineering terminology With specialized coverage of modeling and implementation that is useful to students and professionals in electrical and electronic engineering, this book clarifies SMC principles and their application to power converters. Making the material equally accessible to all readers, whether their background is in analog circuit design, power electronics, or control engineering, the authors—experienced researchers in their own right—elegantly and practically relate theory, application, and mathematical concepts and models to corresponding industrial targets.
Download or read book Power Electronic System Design written by Keng C. Wu and published by Elsevier. This book was released on 2021-06-18 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Processing Circuits Design seamlessly infuses important mathematical models and approaches into the optimization of power processing circuits and linear systems. The work unites a constellation of challenging mathematical topics centered on differential equations, linear algebra and implicit functions, with multiple perspectives from electrical, mathematical and physical viewpoints, including power handling components, power filtering and power regulation. Power applications covered encompass first order RC and RL, second order RLC circuits with periodic drives, constant current source, close-loop feedback practices, control loop types, linear regulator, switch-mode regulator and rotation control. - Outlines the physical meaning of differential forms and integral forms in designing circuits for power applications - Delivers techniques to set up linear algebraic matrix representations of complex circuits - Explores key approaches obtaining steady state and describes methods using implicit functions for close-loop representation - Describes how to implement vector representation of rotational driving sources - Supplemented by MATLAB implementations
Download or read book Switching Power Supplies A Z written by Sanjaya Maniktala and published by Elsevier. This book was released on 2006-06-22 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of Switching Power Supplies has become one of the most crucial aspects of power electronics, particularly in the explosive market for portable devices. Unfortunately, this seemingly simple mechanism is actually one of the most complex and under-estimated processes in Power Electronics. Switching power conversion involves several engineering disciplines: Semiconductor Physics, Thermal Management, Control Loop theory, Magnetics etc, and all these come into play eventually, in ways hard for non-experts to grasp. This book grows out of decades of the author's experience designing commercial power supplies. Although his formal education was in physics, he learned the hard way what it took to succeed in designing power supplies for companies like Siemens and National Semiconductor. His passion for power supplies and his empathy for the practicing or aspiring power conversion engineer is evident on every page.* The most comprehensive study available of the theoretical and practical aspects of controlling and measuring Electromagnetic Interference in switching power supplies, including input filter instability considerations. * Step-by-step and iterative approach for calculating high-frequency losses in forward converter transformers, including Proximity losses based on Dowell's equations.* Thorough, yet uniquely simple design flow-chart for building DC-DC converters and their magnetic components under typical wide-input supply conditions * Step-by-step, solved examples for stabilizing control loops of all three major topologies, using either transconductance or conventional operational amplifiers, and either current-mode or voltage-mode control.
Download or read book Three Dimensional Integrated Circuit Design written by Vasilis F. Pavlidis and published by Newnes. This book was released on 2017-07-04 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization
Download or read book Low Power Methodology Manual written by David Flynn and published by Springer Science & Business Media. This book was released on 2007-07-31 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.
Download or read book Electrical Power System Essentials written by Pieter Schavemaker and published by John Wiley & Sons. This book was released on 2017-08-07 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrical power supply is about to change; future generation will increasingly take place in and near local neighborhoods with diminishing reliance on distant power plants. The existing grid is not adapted for this purpose as it is largely a remnant from the 20th century. Can the grid be transformed into an intelligent and flexible grid that is future proof? This revised edition of Electrical Power System Essentials contains not only an accessible, broad and up-to-date overview of alternating current (AC) power systems, but also end-of-chapter exercises in every chapter, aiding readers in their understanding of the material introduced. With an original approach the book covers the generation of electric energy from thermal power plants as from renewable energy sources and treats the incorporation of power electronic devices and FACTS. Throughout there are examples and case studies that back up the theory or techniques presented. The authors set out information on mathematical modelling and equations in appendices rather than integrated in the main text. This unique approach distinguishes it from other text books on Electrical Power Systems and makes the resource highly accessible for undergraduate students and readers without a technical background directly related to power engineering. After laying out the basics for a steady-state analysis of the three-phase power system, the book examines: generation, transmission, distribution, and utilization of electric energy wind energy, solar energy and hydro power power system protection and circuit breakers power system control and operation the organization of electricity markets and the changes currently taking place system blackouts future developments in power systems, HVDC connections and smart grids The book is supplemented by a companion website from which teaching materials can be downloaded. https://www.wiley.com//legacy/wileychi/powersystem/material.html
Download or read book CMOS Voltage References written by Chi-Wah Kok and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical overview of CMOS circuit design, this book covers the technology, analysis, and design techniques of voltage reference circuits. The design requirements covered follow modern CMOS processes, with an emphasis on low power, low voltage, and low temperature coefficient voltage reference design. Dedicating a chapter to each stage of the design process, the authors have organized the content to give readers the tools they need to implement the technologies themselves. Readers will gain an understanding of device characteristics, the practical considerations behind circuit topology, and potential problems with each type of circuit. Many design examples are used throughout, most of which have been tested with silicon implementation or employed in real-world products. This ensures that the material presented relevant to both students studying the topic as well as readers requiring a practical viewpoint. Covers CMOS voltage reference circuit design, from the basics through to advanced topics Provides an overview of basic device physics and different building blocks of voltage reference designs Features real-world examples based on actual silicon implementation Includes analytical exercises, simulation exercises, and silicon layout exercises, giving readers guidance and design layout experience for voltage reference circuits Solution manual available to instructors from the book’s companion website This book is highly useful for graduate students in VLSI design, as well as practicing analog engineers and IC design professionals. Advanced undergraduates preparing for further study in VLSI will also find this book a helpful companion text.