Download or read book Survival Analysis with Long Term Survivors written by Ross A. Maller and published by John Wiley & Sons. This book was released on 1996 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to suggest and exemplify a systematic methodology for analysing survival data which contains "immune", or "cured" individuals, denoted generically as "long-term survivors". Such data occurs in medical and epidemiological applications, where the intention may be to identify whether or not cured or immune individuals are present in a population, perhaps as a result of treatments given; in the analysis of recidivism data in criminology, where the intentions are similar with respect to prisoners released from and possibly returning to prison; and in many other areas where followup data is available on individuals, with the possibility that not all suffer the event under investigation. Both nonparametric and parametric methods are proposed and developed. The effects of covariate information can be assessed via a kind of generalised linear framework in the parametric analyses. The proposed methodologies are supported by asymptotic analyses and simulations of real situations. While these theoretical underpinnings are presented in reasonable rigour and detail, the book is aimed very much at the practitioner who wishes to analyse survival data with (or even without) immunes.
Download or read book Survival Analysis written by David G. Kleinbaum and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.
Download or read book Cure Models written by Yingwei Peng and published by CRC Press. This book was released on 2021-03-22 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cure Models: Methods, Applications and Implementation is the first book in the last 25 years that provides a comprehensive and systematic introduction to the basics of modern cure models, including estimation, inference, and software. This book is useful for statistical researchers and graduate students, and practitioners in other disciplines to have a thorough review of modern cure model methodology and to seek appropriate cure models in applications. The prerequisites of this book include some basic knowledge of statistical modeling, survival models, and R and SAS for data analysis. The book features real-world examples from clinical trials and population-based studies and a detailed introduction to R packages, SAS macros, and WinBUGS programs to fit some cure models. The main topics covered include the foundation of statistical estimation and inference of cure models for independent and right-censored survival data, cure modeling for multivariate, recurrent-event, and competing-risks survival data, and joint modeling with longitudinal data, statistical testing for the existence and difference of cure rates and sufficient follow-up, new developments in Bayesian cure models, applications of cure models in public health research and clinical trials.
Download or read book Applied Survival Analysis Using R written by Dirk F. Moore and published by Springer. This book was released on 2016-05-11 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.
Download or read book Survival Analysis Using S written by Mara Tableman and published by CRC Press. This book was released on 2003-07-28 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.
Download or read book The Frailty Model written by Luc Duchateau and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
Download or read book Survival Analysis written by John P. Klein and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.
Download or read book Physical Activity and Cancer written by Kerry S. Courneya and published by Springer Science & Business Media. This book was released on 2010-11-26 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores in depth the relation between physical activity and cancer control, including primary prevention, coping with treatments, recovery after treatments, long-term survivorship, secondary prevention, and survival. The first part of the book presents the most recent research on the impact of physical activity in preventing a range of cancers. In the second part, the association between physical activity and cancer survivorship is addressed. The effects of physical activity on supportive care endpoints (e.g., quality of life, fatigue, physical functioning) and disease endpoints (e.g., biomarkers, recurrence, survival) are carefully analyzed. In addition, the determinants of physical activity in cancer survivors are discussed, and behavior change strategies for increasing physical activity in cancer survivors are appraised. The final part of the book is devoted to special topics, including the relation of physical activity to pediatric cancer survivorship and to palliative cancer care.
Download or read book Analysing Survival Data from Clinical Trials and Observational Studies written by Ettore Marubini and published by John Wiley & Sons. This book was released on 2004-07-02 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to methods of survival analysis for medical researchers with limited statistical experience. Methods and techniques described range from descriptive and exploratory analysis to multivariate regression methods. Uses illustrative data from actual clinical trials and observational studies to describe methods of analysing and reporting results. Also reviews the features and performance of statistical software available for applying the methods of analysis discussed.
Download or read book Frailty Models in Survival Analysis written by Andreas Wienke and published by CRC Press. This book was released on 2010-07-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.
Download or read book Survival Analysis written by Xian Liu and published by John Wiley & Sons. This book was released on 2012-06-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Download or read book An Introduction to Survival Analysis Using Stata Second Edition written by Mario Cleves and published by Stata Press. This book was released on 2008-05-15 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: "[This book] provides new researchers with the foundation for understanding the various approaches for analyzing time-to-event data. This book serves not only as a tutorial for those wishing to learn survival analysis but as a ... reference for experienced researchers ..."--Book jacket.
Download or read book Survival Analysis with Long term Survivors and Partially Observed Covariates written by Dongliang Zhuang and published by . This book was released on 1999 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Joint Models for Longitudinal and Time to Event Data written by Dimitris Rizopoulos and published by CRC Press. This book was released on 2012-06-22 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Download or read book Modelling Survival Data in Medical Research written by David Collett and published by . This book was released on 1993 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data collected on the time to an event-such as the death of a patient in a medical study-is known as survival data. The methods for analyzing survival data can also be used to analyze data on the time to events such as the recurrence of a disease or relief from symptoms. Modelling Survival Data in Medical Research begins with an introduction to survival analysis and a description of four studies in which survival data was obtained. These and other data sets are then used to illustrate the techniques presented in the following chapters, including the Cox and Weibull proportional hazards models; accelerated failure time models; models with time-dependent variables; interval-censored survival data; model checking; and use of statistical packages. Designed for statisticians in the pharmaceutical industry and medical research institutes, and for numerate scientists and clinicians analyzing their own data sets, this book also meets the need for an intermediate text which emphasizes the application of the methodology to survival data arising from medical studies.
Download or read book Modeling Survival Data Extending the Cox Model written by Terry M. Therneau and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.
Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.