Download or read book Electromagnetic Wave Propagation Radiation and Scattering written by Akira Ishimaru and published by John Wiley & Sons. This book was released on 2017-08-09 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Download or read book Tour of the Electromagnetic Spectrum written by Ginger Butcher and published by Government Printing Office. This book was released on 2016 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Theory of Electromagnetic Wave Propagation written by Charles Herach Papas and published by Courier Corporation. This book was released on 2014-05-05 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more.
Download or read book Applications of Electromagnetic Waves written by Reza K. Amineh and published by MDPI. This book was released on 2021-01-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.
Download or read book The Propagation of Radio Waves written by K. G. Budden and published by Cambridge University Press. This book was released on 1988-08-04 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the ionosphere and the magnetosphere, and the theory of their effect on radio waves. It includes accounts of some mathematical topics now widely used in this study, particularly W. K. B. approximations, Airy integral functions and integration by steepest descents. The subject is divided into ray theory and full wave theory. Ray theory is useful for high frequencies when the ionosphere is treated as a horizonally stratified medium. The discussion of the magnetosphere, whose structure is more complicated, includes an account of whistlers and ion cyclotron whistlers. The book has been planned both for final year undergraduates and as a reference book for research. It is suitable as a course book on radio propagation for students of physics or electrical engineering or mathematics. Some of the topics are presented from an elementary viewpoint so as to help undergraduates new to the subject. The later parts are more advanced. Because the subject is so large and has seen many important recent advances, some topics have had to be treated briefly, but there is a full bibliography with about 600 references.
Download or read book Propagation Scattering and Dissipation of Electromagnetic Waves written by A. S. Ilʹinskiĭ and published by IET. This book was released on 1993 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at physicists and engineers conducting theoretical research or designing microwave and millimetre-wave devices, this study explores methods of calculating microwave absorption in waveguides, resonators and periodic structures.
Download or read book Electromagnetic Technologies in Food Science written by Vicente M. Gómez-López and published by John Wiley & Sons. This book was released on 2021-12-13 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Download or read book Advanced Electromagnetic Wave Propagation Methods written by Guillermo Gonzalez and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a solid foundation into the approaches used in the analysis of complex electromagnetic problems and wave propagation. The techniques discussed are essential to obtain closed-form solutions or asymptotic solutions and meet an existing need for instructors and students in electromagnetic theory.
Download or read book The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication written by Tapan K. Sarkar and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important resource that examines the physical aspects of wireless communications based on mathematical and physical evidence The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationdescribes the electromagnetic principles for designing a cellular wireless system and includes the subtle electromagnetic principles that are often overlooked in designing such a system. This important text explores both the physics and mathematical concepts used in deploying antennas for transmission and reception of electromagnetic signals and examines how to select the proper methodology from a wide range of scenarios. In this much-needed guide, the authors—noted experts in the field—explore the principle of electromagnetics as developed through the Maxwellian principles and describe the properties of an antenna in the frequency domain. The text also includes a review of the characterization of propagation path loss in a cellular wireless environment and examines ultrawideband antennas and the mechanisms of broadband transmission of both power and information. This important resource: Includes a discussion of the shortcomings of a MIMO system from both theoretical and practical aspects Demonstrates how to deploy base station antennas with better efficiency Validates the principle and the theoretical analysis of electromagnetic propagation in cellular wireless communication Contains results of experiments that are solidly grounded in mathematics and physics Written for engineers, researchers, and educators who are or plan to work in the field, The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationoffers an essential resource for understanding the principles underpinning wireless communications.
Download or read book Analyzing the Physics of Radio Telescopes and Radio Astronomy written by Yeap, Kim Ho and published by IGI Global. This book was released on 2020-02-07 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
Download or read book Radio Wave Propagation written by John A. Richards and published by Springer Science & Business Media. This book was released on 2008-01-22 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work treats the essential elements of radio wave propagation without requiring recourse to advanced electromagnetic concepts and equations. However, it provides sufficient detail to allow those concerned with wireless systems to acquire quickly a practical working knowledge of the important concepts. Radio wave propagation is placed in a practical context by considering the design aspects of communications systems at microwave frequencies. A fuller consideration of the electromagnetic properties of materials is given late in the book rather than as an introductory chapter.
Download or read book Electromagnetic Pulse Propagation in Causal Dielectrics written by Kurt Edmund Oughstun and published by Springer. This book was released on 1994 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to the Atomic and Radiation Physics of Plasmas written by G. J. Tallents and published by Cambridge University Press. This book was released on 2018-02-22 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.
Download or read book Propagation of Radiowaves written by L. W Barclay and published by IET. This book was released on 2003 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been fully updated to reflect the latest developments in the field of radio communications. This book introduces the basic concepts and mechanisms of radiowave propagation engineering in both the troposphere and ionosphere, and includes greater emphasis on the needs of digital technologies and new kinds of radio systems.
Download or read book University Physics written by Samuel J. Ling and published by . This book was released on 2017-12-19 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Download or read book Electromagnetic Wave Theory written by Jin Au Kong and published by Wiley-Interscience. This book was released on 1990 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance, propagation, radiation and scattering of electromagnetic waves, metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.
Download or read book Electromagnetic Fields and Waves in Fractional Dimensional Space written by Muhammad Zubair and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's equations in fractional space are derived by using modified vector differential operators.